Quantification of Uncertainty in Extreme Scale Computations (QUEST)

www.quest-scidac.org

H. Najm1, B. Debusschere1, M. Eldred1, R. Ghanem2, O. Ghattas3, R. Moser3, E. Prudencio3, D. Higdon4, J. Gattiker4, O. Knio5, Y. Marzouk6

1Sandia National Laboratories, Livermore, CA & Albuquerque, NM
2University of Southern California, Los Angeles, CA
3University of Texas, Austin, TX
4Los Alamos National Laboratory, Los Alamos, NM
5Duke University, Durham, NC
6Massachusetts Institute of Technology, Cambridge, MA

SciDAC PI Meeting, 10–12 Sep 2012, Rockville, MD
Outline

1. Introduction
2. QUEST Overview
3. Technical Progress
4. Closure
Introduction – Motivation

Why Uncertainty Quantification (UQ) ?

- Assessment of confidence in computational predictions
- Validation and comparison of scientific/engineering models
- Design optimization
- Use of computational predictions for decision-support
- Assimilation of observational data and model construction

Why UQ in SciDAC ?

- Explore model response over range of parameter variation
- Enhanced understanding extracted from computations
- Particularly important given cost of SciDAC computations
QUEST Goals

1. Advance the state of the art in UQ theory, methods, and software, addressing UQ challenges with extreme scale computational problems
 - High-dimensionality
 - Nonlinearity
 - Sparse data

2. Provide expertise, advice, and state of the art UQ algorithms and software tools to SciDAC projects
 - UQ software products
 - SciDAC partnerships
 - Outreach: UQ tutorials, summer school, web
The scope of QUEST covers a range of UQ activities including:

- UQ problem setup
- Characterization of the input space
- Local and global sensitivity analysis
- Adaptive stochastic dimensionality and order reduction
- Forward and Inverse UQ
- Fault tolerant UQ methods
- Model comparison and validation
Key Elements of our UQ strategy

- Probabilistic framework
 - Uncertainty is represented using probability theory
- Parameter Estimation, Model Calibration
 - Experimental measurements
 - Regression, Bayesian Inference
- Forward propagation of uncertainty
 - Polynomial Chaos (PC) Stochastic Galerkin methods
 - Intrusive/non-intrusive
 - Stochastic Collocation methods
- Model comparison, selection, and validation
- Model averaging
- Experimental design and uncertainty management
<table>
<thead>
<tr>
<th>Institution</th>
<th>Expertise</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNL</td>
<td>Forward and inverse UQ methods, design under uncertainty</td>
<td>DAKOTA UQTK</td>
</tr>
<tr>
<td>USC</td>
<td>Intrusive UQ methods, probabilistic modeling</td>
<td></td>
</tr>
<tr>
<td>Duke</td>
<td>Sparse adaptive forward UQ methods</td>
<td></td>
</tr>
<tr>
<td>UT</td>
<td>Large scale inverse problems validation, inverse UQ</td>
<td>QUESO</td>
</tr>
<tr>
<td>LANL</td>
<td>Gaussian process modeling, inverse UQ</td>
<td>GPMSA</td>
</tr>
<tr>
<td>MIT</td>
<td>Calibration, adaptive sampling, inverse UQ, experimental design</td>
<td></td>
</tr>
</tbody>
</table>
QUEST UQ Software tools

DAKOTA
- Optimization and calibration
- Non-intrusive UQ
- Global Sensitivity Analysis
- > 10K registered downloads

QUEST UQ Software tools

QUESO
- Bayesian Inference
- Parallel MultiChain MCMC
- Bayesian Model Analysis
- Model Calibration

GPMSA
- Bayesian Inference
- Gaussian Process Emulation
- Model Calibration
- Model discrepancy analysis

UQTk
- Intrusive PC UQ
- Non-intrusive sampling
- Customized sparse PCE
- Random fields
QUEST Partnerships

<table>
<thead>
<tr>
<th>DOE</th>
<th>Project Title</th>
<th>Lead PI</th>
<th>QUEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNSA</td>
<td>Parallel Dislocation Simulator (ParaDiS)</td>
<td>T. Arsenlis</td>
<td>Najm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LLNL</td>
<td>SNL</td>
</tr>
<tr>
<td>FES</td>
<td>Center for Edge Plasma Physics Simulation (EPSI)</td>
<td>C.S. Chang</td>
<td>Moser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Princeton</td>
<td>UT</td>
</tr>
<tr>
<td>FES</td>
<td>Plasma Surface Interactions: Bridging from the Surface to the Micron Frontier</td>
<td>B. Wirth</td>
<td>Higdon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ORNL</td>
<td>LANL</td>
</tr>
<tr>
<td>BER</td>
<td>Predicting Ice Sheet & Climate Evolution at Extreme Scales (PISCEES)</td>
<td>P. Jones</td>
<td>Eldred,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LANL</td>
<td>Ghattas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SNL, UT</td>
</tr>
<tr>
<td>BER</td>
<td>Multiscale Methods for Accurate, Efficient & Scale-Aware Earth System Modeling</td>
<td>B. Collins</td>
<td>Debusschere</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LBNL</td>
<td>SNL</td>
</tr>
<tr>
<td>NP</td>
<td>Nuclear Computational Low Energy Initiative (NUCLEI)</td>
<td>J. Carlson</td>
<td>Higdon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LANL</td>
<td>LANL</td>
</tr>
<tr>
<td>HEP</td>
<td>Computation-Driven Discovery for the Dark Universe</td>
<td>S. Habib</td>
<td>Higdon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANL</td>
<td>LANL</td>
</tr>
<tr>
<td>HEP</td>
<td>Community Project for Accelerator Science & Simulation (ComPASS)</td>
<td>P. Spentzouris</td>
<td>Prudencio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FNAL</td>
<td>UT</td>
</tr>
</tbody>
</table>
Outreach Activities

- **Website**
 - www.quest-scidac.org
 - Production version will be publicly accessible soon

- **UQ Tutorials in workshops/conferences**
 - SAMSI UQ workshop, Raleigh, NC; Sep 7-9, 2011
 - SIAM Conference on UQ, Raleigh, NC; Apr 2-5, 2012

- **UQ Summer School**
 - USC, LA; Aug 22-24, 2012

- **UQ Tools Tutorial**
 - Hands-on practice with UQ software tools
 - Announcements went out in late July
 - http://cadmus.usc.edu/Quest-Tutorial
 - Some openings still available
M. Eldred, J. Jakeman

- Development of interfaces: QUESO–DAKOTA–GPMSA
 - Ongoing
 - DAKOTA interfaces to both
 - C++ GPMSA implementation using QUESO components

- Stochastic collocation
 - Nodal or hierarchical interpolation on structured grids
 - Interpolants may be local or global
 - value-based or gradient-enhanced
 - Automated refinement
 - uniform, dimension-adaptive, or locally-adaptive
 - Hierarchical surplus error estimates for values and gradients applied to QoI (e.g., response covariance)

- Compressive sensing: basis pursuit and basis denoising
Work with CASL energy innovation hub

PCE/SC with uniform/adaptive refinement vs LHS

\[n = 4, \text{ smooth, mild anisotropy} \]

\[n = 10, \text{ discontinuous, high anisotropy} \]
B. Debusschere, C. Safta, K. Sargsyan

- Version 1.0 published under the GNU LGPL
 - Intrusive PC functionality
- New release targeted for Fall 2012
 - Intrusive and non-intrusive utilities
 - User-specified multi-index capabilities
 - Flexible efficient sparse tensor representations
 - Effective for high-dimensional systems
 - Random fields:
 - Covariance matrix estimation (many samples)
 - Karhunen-Loève expansions (KLEs)
- Matlab version
- Example/benchmark problems, tutorial materials
Hierarchical interpolation with generalized sparse grids
 - Gradient-enhancement
 - Error indicators leverage both value and gradient surpluses

Building Sparse PC representations
 - Compressed Sensing (CS) – ℓ_1 regularization
 - cross validation, tolerances for model choice
 - Bayesian Compressed Sensing (BCS) – Laplace priors
 - BCS/CS comparisons on Genz functions – 5-10d
 - Similar convergence with no. of samples
 - Slightly higher accuracy with CS
 - BCS: $O(100) \times$ reduction in no. of PCE terms

discovery of sparse signals:
SNL: Algorithms: Missing Data
H. Najm, B. Debusschere, C. Safta, K. Sargsyan, K. Chowdhary

Context
- Missing/failed measurements or computational samples
- Partial specification of uncertain information
 - Error bars vs. joint PDF
- Processed data products

Imputation methods
- Existing data \Rightarrow probabilistic prediction of missing data

Data Free Inference (DFI) algorithm
- Given information \Rightarrow probabilistic models of missing data
 - Application in chemical ignition
 - Extension to processed data products
LANL: GPMSA & BART Developments
D. Higdon, J. Gattiker

- New release of GPMSA for sensitivity analysis and computer model calibration using Bayesian methods
 - Tutorial material
 - Range of sample problems
 - sensitivity, calibration, & multivariate output

- Prototype parallel implementation of the Bayesian additive regression tree (BART) for HPC.
 - linear scaling up to $\sim 50p$
 - tests with higher proc counts in progress
UT-Austin: Scalable Parallel Algorithms for Extreme-Scale Stochastic Inverse Problems
T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler (also funded by AFOSR and NSF)

Stochastic Inverse Probs:
- PDEs & high-dim parameter spaces (from discretized fields)
- Current methods are prohibitive

Challenges:
- appropriate choice of prior
- consistent discretizations (guarantee convergence to infinite-dim problem)
- scalable parallel MCMC algorithms

Recent accomplishments:
- Consistent discretizations via appropriate mass matrix weightings
- Prior defined by inverse of elliptic operator; carried out by multigrid
- Low rank approximation of Hessian enables sampling of Gaussianized posterior in dimension-independent number of forward solves
- Scaling to 1M parameters and 100K processor cores
Example: Extreme-scale Seismic Inversion
T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler

- Linearized 3D global seismic inversion
- 1.07M earth model parameters
- 630M wave propagation unknowns
- 100K cores on Jaguar (ORNL)
- $2000 \times$ reduction in effective problem dimension due to low rank approx

- Top row: Prior samples
- Bottom row: Posterior samples
- Difference between rows indicates information gained from (and uncertainty reduced due to) data
- Gordon Bell Prize finalist, SC12
UT-Austin: Software: QUESO
K. C. Estacio-Hiroms, E. E. Prudencio, K. W. Schulz (also funded by NNSA)

- Improvement of QUESO-DAKOTA usability
 - Periodic output of samples
 - Output of extra information
 - Informative output summary

- Implementation of GPMSA models and algorithms
 - QUESO capabilities will be usable through DAKOTA

- Preparation of tutorial material
 - Bayesian inversion, and forward propagation of uncertainty
 - Object-oriented mapping of mathematical concepts
 - Solution of statistical inverse problems with DRAM MCMC
 - Solution of statistical forward problems with Monte Carlo
 - Use of parallel computing for statistical analysis
 - References to Bayesian analysis, MCMC, Monte Carlo, C/C++, MPI
Developed a multiscale Bayesian preconditioning approach
- Demonstrated capability to simultaneously
 - address stiffness and noise
 - represent noisy outputs w/sparse, low-order, PCEs
- Order of magnitude reduction in # of samples / replicas
Developed a sparse adaptive pseudospectral sampling algorithm
 - accommodates arbitrary admissible stencils
 - including a maximal polynomial basis
 - without internal aliasing

Analysis of algorithm performance based on existing Ocean General Circulation Model (OGCM) databases

Demonstrated order-of-magnitude computational savings in simulations of the ocean circulation in the Pacific
MIT: Large-Scale Bayesian Inference
T. Moselhy, Y. Marzouk

Current state of the art

- Markov chain Monte Carlo (MCMC) sampling is the *workhorse algorithm* for Bayesian inference and prediction
- Challenges: enormous computational effort, difficult proposal design, insufficient convergence diagnostics

Inference with optimal maps

- *New approach*: find a deterministic map that *pushes forward* the prior measure to the posterior measure
- Converts inference to an optimization problem, with natural convergence diagnostics
- Outperforms MCMC in efficiency and accuracy on a variety of inference problems, with 10^3 dimensions or more
(above) sequence of maps yields samples from non-Gaussian posterior in a chemical kinetic system

Current work on map-based inference:
- Hierarchical Bayesian models
- Parallel algorithms for stochastic optimization
- Sequential data assimilation (i.e., filtering and smoothing)
MIT: Optimal Experimental Design
X. Huan, Y. Marzouk

How to choose observations or experimental conditions **optimally**?
- Bayesian approach: maximize *expected information gain* for parameter inference, prediction, model discrimination, etc

Key computational ingredients:
- Surrogates for physical model describing experiments
- Statistical estimators and stochastic optimization methods

Recent accomplishments: **stochastic approximation** and **sample-average approximation** for optimal Bayesian design, using estimators of mutual information gradient
USC: Constrained & Adaptive Constructions
E. Kalligiannaki, R. Tipireddy, G. Ghanem

Develop Constrained Stochastic Representations
- Positive random variables
- More general constraints on either function values or values of nonlinear functionals of the random variables

Develop Bases Adapted to Quantity of Interest
- Scales linearly with stochastic dimension
\[\mathcal{I} = \{ y(\omega) \in L_2(\Omega, \Sigma(H), P) : y(w) \text{ satisfies constraints } \forall \omega \} \]

The projection of \(y \in L_2 \) on \(\mathcal{I} \):

- Sample from prior PC expansion
- Delete realizations that do not satisfy constraints
- Recompute PC coefficients from remaining realizations

Initial data, \(u(0) = U = 0.2 + U_1 \xi \):

- \(U_1 = 0.08 \), \(N_s = 10^4 \), \(N_t = 150 \)
- \(U_1 = 0.08 \), \(N_s = 10^4 \), \(N_t = 200 \)
- \(U_1 = 0.08 \), \(N_s = 10^4 \), \(N_t = 10 \)
- \(U_1 = 0.08 \), \(N_s = 10^4 \), \(N_t = 0 \)

Improve Convergence of Stochastic ODE

Generator for constrained populations
Expand $u(\xi)$: polynomials in $\eta = A\xi$

- with proper choice of A, the measure of the solution is concentrated along leading η_1 dimension
- A is chosen so that η_1 contains all Gaussian content of QoI
Closure

- Work on UQ software and algorithms development
 - Computational efficiency
 - Functionality, usability, scalability
 - Adaptivity, sparsity, preconditioning
 - Reduced-order, low-rank
 - Convergence, stability
 - Partial information, missing data

- Robustifying algorithms for large-scale applications
- Software integration well along the way
- Outreach via web, tutorials, and summer school
- SciDAC partnership activities getting off the ground