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The objective of our proposed work is to develop 
and implement new methods and theories to 
predict electronic excited state phenomena in 
energy related materials, e.g., materials for 
photovoltaics, photocatalysis, and electrical 
energy storage. 



Use the underlying laws of quantum theory to 
predict and design materials

From atoms to solar cells, electronic devices, biomolecular systems, catalysts...



Science Applications

•Chromophore or dye molecules in gas-phase, in solution, or at an oxide surface

•Solvents, e.g. water or electrolyte, in contact with an oxide or metal electrode

•Molecular junctions and self-assembled monolayers

•Multicomponent inorganic semiconductor nanostructures

•Transition metal oxides, with defects, dopants, and with magnetic cations

•Nanophase crystals and clusters appropriate for photovoltaic applications

•Organic molecular crystals and assemblies, and donor-acceptor molecular 
interfaces



Example:    Electronic Structure of 
Organic-Inorganic Interfaces

• Organics are prevalent in next-generation 
energy conversion technology
• Energy conversion efficiencies are 
controlled in part by charge transfer and 
transport at interfaces
• Need for quantitative theory of structure and 
electronic energy level alignment of 
inorganic-organic interfaces



Level alignment at metal-molecule contacts

Physical effects influencing level 
alignment

• IP and work functions 
• Interfacial charge transfer: Induced 
interface dipole ΔV ~ Δp/A
• Energy level broadening: 
Hybridization, lifetime 
• Surface polarization: Non-local 
“image charge” effects

Energy level diagram

Fermi Energy 

Metal

vacuum

ΔV

Affinity Level
LUMO

Ionization Level
HOMO



The Ground State

Imperative to know the structural properties of 
materials and to establish an underlying 
description of the electronic structure problem.



Focus on chemically active electronic (valence) states.     Capture the 
physical content of the periodic table.  Sets the energy and length scale to 
the chemically relevant states. 

Pseudopotential Theory
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Solving the Kohn-Sham Problem:

Density Functional Theory



Electronic energy from a solution to the Kohn-Sham Problem

Example:  Understanding the structure 
of a metal-semiconductor interface 
(Pb on Si).  Lattice mismatch has 10 
Pb atoms for every 9 Si atoms. 

1500 atoms were treated and the 
structure was fully relaxed. 



The Excited State
Imperative to know the electronic and optical 
properties properties of materials for a variety 
of energy related applications.



Light absorbed by a solid creates 
an electron-hole pair

Nomenclature:

EA IP

EQP = IP − EA

EA=Energy to add an electron
(Electron affinity)

IP=Energy to remove and electron 
(Ionization potential)

Quasiparticle band gap=IP-EA
Interacting electron-hole pair are excitons

“Optical gap” is the energy to create an exciton state

This is a many body problem wherein 
optical excitations can be coupled to 
structural changes. 

e

h



Quasiparticle Energies:  The GW Method

The quasiparticle energy corresponds to the energy create to particle-like excitation in 
a system, e.g., adding a particle to or removing a particle from a system of N 
interacting particles. 

∑ is the non-local, energy-dependent, non-Hermitian, self-energy operator; its exact 
form is unknown, but progress can be made by approximating it within many-body 
perturbation theory, e.g., as the first term of an expansion in the screened Coulomb 
interaction.



GW Method Yields Accurate Quasiparticle Gaps

Example of GW 
calculations for “band 
gaps” of binary 
compounds. 



The Bethe-Salpeter Equation

Building on the GW approximation for Σ, neutral (electron-hole) excitations, probed in optical or 
other measurements, can be calculated through the solution of a Bethe-Salpeter equation.

where |vck⟩ is the product of occupied (denoted by index v) and unoccupied (c) quasiparticle states 
of the same wave vector k.  The electron-hole amplitude or exciton wave function can be expressed 
in real space as



Optical absorption spectra can be obtained from the imaginary part of the 
transverse dielectric function, which can be written:

and v is the velocity operator along the direction of the 
polarization of light, e.

Example for a carbon nanotube



Computational Issues: Ground State

•Numerous degrees of freedom:  Many body problem

•Requires a very precise algorithm

•Problem scales poorly:  Typically the Kohn-Sham 
problem scales in a super linear fashion.  

Key issue:  Solving the an eigenvalue problem for large 
systems.
Status:  Typically a few thousand atoms can be 
handled. 



Computational Issues: Excited State

•Numerous degrees of freedom:  Many body problem

•Problem scales poorly: In principle, the Bethe-Salpeter 
equation scales as N6 where N is the number of atoms.

•Large number of unoccupied states considered.  

•Semi-core states often need to be explicitly handled. 

Key issue:  Handling the empty state problem, improve 
scalability by numerical  and hardware approaches, e.g., 
GPU’s.
Status:  Typically a hundred atoms can be handled. 



Example:  New algorithms for a “parallel eigensolver”



System of 
interest 

(nanocrystal)

Wave function 
vanishes 

outside the 
domain

Solving the Kohn-Sham Problem 
in Real Space

Variable of 
interest is wave 

function on a grid 
point

Discretize Kohn-Sham Equation:
Solve using higher-order finite differencing 



Initial Guess for V , V = Vat

Solve (−1
2
∇2 + V )ψi = εiψi

Calculate new ρ(r) = ∑occ
i |ψi|2

Find new VH: −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

V = Vnew
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“Traditional Approach to the Kohn-Sham Problem”

Most of the time is spent on the diagonalization part.  
One can use  ARPACK, variant of the Lanczos process (Implicitly Restarted 
Lanczos) 



Filtered Subspace Iteration
Define charge density matrix:

For any orthonormal matrix U, we can write

where the diagonal is the charge density.

We do not need explicit vectors, we only need to know 

We can find this using subspace filtering.  



Nature of the Filter
Given the diagonalized solution:

Let us consider a polynomial filter, p(H)

Suppose we choose our filter such that it is small for states not of 
interest, e.g., p≈0, for empty states, then we can approach what we 
want 

 H = QT!Q ! = diag("1,"2 ,…,"N ) Q = [# 1,# 2 ,…,# N ]

P(H ) = QT P(!)Q = P("i
i=1

N

# )$ i
T$ i

P(H )v = P("i
i=1

N

# )($ i
T v)$ i



Qualitatively we want a 
polynomial that looks like this:

Enhanced Suppressed 



This polynomials grow rapidly outside of the interval [-1,1] 
and have a convenient recursion relationship.

Chebyshev 
Polynomials:

Example of Chebyshev polynomial with m=20



“Non-Traditional Approach to the Kohn-Sham Problem”

Select initial V = Vat

Get initial basis {ψi} (diag)

Calculate new ρ(r) = ∑occ
i |ψi|2

Find new VH: −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

Filter basis {ψi} (with Hnew)+orth.

V = Vnew
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Filtering operation replaces diagonalization operation.



“Typical Results” 

Note:  This is not an approximate method.   
HTTP://PARSEC.ICES.UTEXAS.EDU

Phys. Rev. E 74, 066704 (2006) Si9041H1860
diameter = 7 nm

Largest system to date

HTTP://PARSEC.ICES.UTEXAS.EDU
HTTP://PARSEC.ICES.UTEXAS.EDU
HTTP://PARSEC.ICES.UTEXAS.EDU
HTTP://PARSEC.ICES.UTEXAS.EDU
HTTP://PARSEC.ICES.UTEXAS.EDU
HTTP://PARSEC.ICES.UTEXAS.EDU


M. Head-Gordon and E. Artacho, Physics 
Today (2008).

Results for 
Si9041H1860

“Time to solution” (TTS) Figure of Merit



The Future

Suppose we choose our filter for just a part of the spectrum?



Expressing step function with 
Chebyshev polynomials is an 
issue.  Resulting window “rings.”

Chebyshev polynomials can be 
modified.  “Chebyshev-Jackson” 
approximation shown at right. 



Target:   Eigenvalue 
spectrum (density of states) 
for Si quantum dot 

Si275H172

Issues:

•Balance windows to contain 
similar number of eigenvalues

•Avoid missing eigenvalues

•Avoid double counting 
eigenvalues



Proof in Principle:   Eigenvalue spectrum (density of 
states) for Si quantum dot calculated from 16 windows  

Spectrum agrees 
with “traditional” 
calculations.  

Each window done 
independently. 

Schofield, Chelikowsky and Saad, Computer Physics 
Communications 183, 497 (2012)



Deliverables

• Complete work on “parallel eigensolver.”  Optimize GW/BSE code to incorporate 
empty state formalism.  Develop seamless interface between ground state and 
excited state codes*.  

• Extend GW/BSE codes to systems with thousand of atoms.  

• Massively-parallel, open-source code spanning both ground and excited state properties code will 
support mixed shared and distributed memory models as well as mixed CPU and GPU machines

➡ Capable of handling large systems of energy relevant materials with a variety of boundary 
conditions

➡ Well-interfaced to commonly accessible electronic structure codes in the materials research 
community and  available on the web

Milestones

*Codes will be developed and optimized to target the DOE machines at NERSC and the LCF machines at 
Oak Ridge and Argonne National Labs. 


