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Verification V&YV within CISM and CESM Validation Uncertainty Quantification

With the release of version 2.0 this fall, Glimmer-CISM solves the higher-order (HO) longitudinal

The continental-scale ice sheet community relies on a suite of test cases to verify model results ‘3‘“ a;ltorga;ted.Zo.ft“iirevpglka?fhis (l;)eing and transverse stress gradients (Pattyn, 2003). This is an extension of the shallow ice
. . . . Land I ce Valldatlon €velopeda 1o ald 1n tne 0) € AyCOore€ . . . . ) ' . .
and C}IISM aild 1tShPr}elfi€}feSS<)1;1GhmineF (Rutt et ?11- 2909) 6}1’}61 n}? CXCICPUOH-f ’IC‘llllgl\r/?m(f)e toda dynamical backage, beta0? development occurring in PISCEES, the approximation used in Glimmer, and allows a more complete representation of ice flow near the P r. O b I e m E - t St t
core that solves the hig e.r—or er velocity approximation W1t the re ease' 0 2. a1.1 p§ar 09/04/20’1 5 coupled CESM, and the ice sheet modeling ice divides and ice sheet margins (e.g. grounding lines and outlet glaciers). Nonetheless HO is still Xpe rl m e n ra egy
term development that will enable Stokes flow (see equations to the far right), as well significant community. Currently it is just begun, and an approximation to the full Stokes equations as follows: . - , , . o . _ . . | ' .
development to incorporate a nonlinear solver framework and parallel capability (Evans et al., provides: (?OHU.OIS on bgsal friction or shdmg arc very important to ice flow. However we have very Sample the different ways to initialize an ice sheet consistent with observations. Estimate impacts on response to environmental change.
2012) has highlighted the need for more comprehensive and automated verification tools. > simulation information v — 0 - o . , . little information about these conditions:
> performance diagnostics, including failures p 'V = Mass conservation: For HO, simplified to an ice thickness relation. However, ice sheet initialization is expensive. Testing effects of 10 dimensions (e.g. parameters) would need around 500 experiments for an
The existing suite of test cases are being combined into a collection of cases designed for easy > pflots of thle Stméuliatloﬁ’ ancIi{ its difference = V.04 pg Momentum conservation: For HO, set acceleration terms to zero but Sediments approximate cost of 27 million cpu hours. Many of the uncertainties are high dimensional (e.g. basal boundary condition).
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incorporated into the verification test suite. For example, manufactured analytic solutions developed ClSThickness
to verify a three-dimensional, nonlinear, Stokes-flow based finite element model (Leng et al., 2012)
will be included as model development within CISM focuses on Stokes flow.

Water pressure and distribution

Above: screenshot from the initial python based V&V software
package applied to a CISM\Okm Greenland test case

The simplification of the equations to the HO approximations are presented by Pattyn (2003).

Configure File Diagnostics The velocity vector is v = {u,v,w}, the two-dimensional divergence, gradient operators

R are V-, V. The stress tensor, ice density, gravity, heat capacity, thermal conduction, and the
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Bed elevation (Holt et al., 2006)
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