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Model Test Case: Hybrid Coordinate Ocean Model

. Truncation LHS error with time, Integrated SST
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Remarks:
 In addition to avoiding internal aliasing, the Smolyak
pseudospectral projection permits higher-order polynomials
(especially monomial terms) with the same realization stencil

o Inherent in construction is an error indicator for adaptive
refinement

:
2 background viscosity (m?/s)  U(1074,1079)
3 background diffusivity (m?/s)  14(1075,10~4)

4 stochastic wind drag coefficient ¢/(0.2,1.0)
Gulf of Mexico during Hurricane Ivan (September 2004)
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Full Database Solution: Sensitivity Analysis
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