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Abstract

A crucial aspect in the application of uncertainty quantification meth-
ods to complex models concerns the ability to sample quantities of
interest efficiently. This poster presentation discusses the develop-
ment and implementation of a sparse, adaptive sampling strategy to
efficiently and reliably construct suitable polynomial chaos surrogates.
The approach relies on a pseudospectral construction that accommo-
dates arbitrary admissible sparse grids. An a priori analysis of the im-
plementation and performance of the algorithm is conducted, based on
existing databases of ocean global circulation simulations. The tests
demonstrate that in the present setting order-of-magnitude savings are
obtained over isotropic sparse sampling.

Model Test Case: Hybrid Coordinate Ocean Model

Four Uncertain Parameters
Parameter Distribution

1 critical Richardson number U(0.25,0.7)
2 background viscosity (m2/s) U(10−4,10−3)
3 background diffusivity (m2/s) U(10−5,10−4)
4 stochastic wind drag coefficient U(0.2,1.0)

Gulf of Mexico during Hurricane Ivan (September 2004)

Polynomial Chaos Expansions

Fourier-like expansion over orthogonal basis function Ψk

U(ξ, t) =
P∑

k=0

Uk(ξ, t)Ψk(ξ)

Coefficients Uk given by Uk =
〈U,Ψk〉〈

Ψ2
k

〉 ≈ 〈U,Ψk〉Q〈
Ψ2

k

〉 where 〈·, ·〉Q
represents scalar product performed with numerical quadrature.

Full Database Solution: Sensitivity Analysis

Database of 385 realizations for up to fifth order polynomials, using
Smolyak quadrature, and equal resolution in all dimensions. Ti is
the total sensitivity index due to the i th random variable.
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Integrated SST Sensitivity Analysis
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• 3rd and 4th dimensions dominate sensitivity
• Can accuracy be reduced in first two dimensions?
• Should accuracy be increased in the latter two dimensions?

Dimensionally Adaptive Representation

• Enrich along 3rd and 4th dimensions (128 additional realizations)
• Generate Latin-Hypercube sample with 256 realizations for verification

Accuracy P N Description
(5,5,5,5) 126 385 Original
(5,5,7,7) 168 513 Enriched in 3 & 4
(2,2,5,5) 36 73 Reduced in 1 & 2
(2,2,7,7) 59 169 Enriched and Reduced

P: Number of Polynomials
N: Number of Realizations

Dimensionally Adaptive Results
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Truncation LHS error with time, Integrated SST

 

 

p=(5,5,5,5)
p=(5,5,7,7)
p=(2,2,5,5)
p=(2,2,7,7)

• Increased resolution along 3rd and 4th dimension yields lower error
• Decreased resolution along 1st and 2nd dimension has minimal affect

on error

General Adaptivity

The dimensionally adaptive approach may still include more realizations
than necessary. However, one must be careful in order to minimize
aliasing effects

• Internal aliasing can only be
avoided if scalar products of all
polynomial pairs can be correctly
integrated

• Aliasing errors are same order of
magnitude as coefficients

• Note: There is no internal
aliasing incurred when
performing a “rectangular”
projection. 0 1 2 3 4 5 6 7 8 9 10
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Smolyak Pseudospectral Projection

Instead of a direct Smolyak quadrature, build final projection as a
Smolyak sum of internal-aliasing-free projections

Example:
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is a weighted superposition of
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and all smaller projections
Remarks:
• In addition to avoiding internal aliasing, the Smolyak

pseudospectral projection permits higher-order polynomials
(especially monomial terms) with the same realization stencil

• Inherent in construction is an error indicator for adaptive
refinement

Adaptive Refinement

1 Start with a base representation
2 Choose multi-index with highest indicator
3 Enrich index with forward neighbors
• Require the index remains admissible for proper

telescoping
• Require associated realizations be in database (for

a priori testing)
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Adaptive Driver Results

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

Realization Count

LH
S

 L
2 

E
rr

or

Error of Adaptive and Isotropic, Integrated SST, T=60hr
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Integrated SST (degrees C)

Integrated SST PDF at T=60hr comparison

 

 

69 Realizations
513 Realizations

Conclusions:
• Reach error threshold with 69 realizations compared to 513
• Probability Density Function estimations are nearly identical
• Adaptive refinements leads to order-of-magnitude savings with no

prior knowledge of full solution
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