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Predictive Model Calibration 

•  Applica'on	  to	  ParaDiS	  
–  a	  LLNL	  disloca'on	  density	  (DD)	  model	  	  
–  used	  to	  create	  “sub-‐grid”	  models	  of	  crystal	  disloca'on	  
dynamics	  for	  use	  in	  con'nuum	  codes	  (ALE3D)	  

•  Inputs:	  	  
–  Disloca'on	  velocity	  model,	  by	  upscaling	  MD	  experiments	  
–  Various	  opera'onal	  condi'ons	  (P,	  T,	  strain	  rate	  etc)	  

•  Output	  
–  Simple	  ODE	  models,	  fiLed	  to	  ParaDiS	  simula'on	  of	  
disloca'on	  density	  and	  stress-‐strain	  evolu'on	  

•  Analyses	  done	  only	  for	  Ta	  
•  MD	  -‐>	  DD	  upscaling	  [Big	  source	  of	  
uncertainty,	  for	  Ta]	  
–  FiLed	  the	  disloca'on	  density	  model	  to	  MD	  
simula'on	  data,	  using	  MCMC	  

–  Forward	  UQ	  propaga'on	  shows	  significant	  
spread	  in	  disloca'on	  density	  predic'ons	  

•  A	  big	  source	  of	  input	  uncertainty	  

•  DD	  -‐>	  con'nuum	  upscaling	  [Smaller	  source	  
of	  uncertainty,	  for	  Ta]	  
–  ODE	  models	  fits	  ParaDiS	  outputs	  very	  well	  

•  Posterior	  distribu'on	  of	  model	  parameters	  es'mated	  

•  LeW:	  MD	  -‐>	  DD	  upscaling	  
(uncertainty	  in	  model	  
predic'ons)	  

•  Right:	  Posterior	  
distribu'on	  of	  DD	  -‐>	  
Con'nuum	  upscaling	  
model	  

QUEST algorithmic developments 
focus on key challenges in extreme 

scale computing 
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Dimension-adaptive h-refinement for SC: 
•  Local spline interpolants: linear Lagrange (value-based),  

cubic Hermite (gradient-enhanced) 
•  Global grids: iso/aniso tensor, iso/aniso/generalized 

sparse 
•  h-refinement: uniform, adaptive, goal-oriented adaptive 
•  Basis formulations: nodal, hierarchical 
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and similar for higher-order moments 

Cubic shape fns: type 1 (value) 
& type 2 (gradient) 

Multivariate tensor product to arbitrary derivative order (Lalescu): 

Gradient-enhanced interpolants: 
global h-refinement 

Hierarchical basis: 
• Improved precision in QoI (mean 
and higher order moments) 
increments 

• Surpluses provide error estimates 
for local refinement using local/
global hierarchical interpolants 

• New QoI error indicators naturally 
leverage both value and gradient 
surpluses 

From J. Jakeman, July 2010 

Local Error Estimation with 
Hierarchical Value/Gradient 

Surpluses 

Courtesy of G. Tang (Stanford) 

Solvers: 
•  l0 denoising with Orthogonal 

Matching Pursuit 
•  l1 Basis Pursuit with Linear 

Programming solvers 
•  l1 Basis Pursuit Denoising 

with Interior Point solvers 

Stochastic Expansions on Unstructured Grids: 
Compressive Sensing 

•  With high-dimensional input, spectral representations require too many 
terms, therefore building sparse bases is important.  

•  Borrowing from the machine learning community, applying sparse learning 
methods to polynomial bases. 

•  Evaluated and/or extended various Compressive Sensing (CS) and Bayesian 
Compressive Sensing (BCS) approaches 

•  Analyzed the dependence of performance on the effective dimensionality (sparsity) of 
the model and the number of model simulations available. 

•  K-folds cross validation is applied to determine the polynomial degree and tolerance ε 
that produce a PCE that generalizes well to new data [Doostan et al., JCP 2011] 

•  An iterative BCS methodology developed and applied to Community Land Model 
(CLM) in the context of CSSEF (Climate Science for a Sustainable Energy Future). 

•  Future directions: 
•  Adjoint-enhanced CS 
•  Least interpolation 

The coefficient recovery for a 5-
dimensional Genz oscillatory function up 
to total order 5. True coefficients are 
computed by a high-level sparse 
quadrature. 

Sparse basis recovery success rate, out 
of 10 replicas, vs. the number of 
measurements and the model sparsity, i.e. 
the number of non-zero polynomial 
coefficients in a polynomial model of d=5 
and p=10 

Relative L2 error measures for both training and validation datasets as the 
effective dimensionality increases, for three different values of the number of 
measurements, N = 1000 (left), N = 5000 (right) for d = 50. Effective dimensionality 
is the number of dimensions that contain 95% of the total sum of ai’s. 

BCS/CS comparison for 5d, order 10(left) and 10d, order 5(right) Genz corner-peak 
functions 

•  CS generally lead  to smaller errors 
•  BCS runs faster with the default settings and stores only relevant bases 
•  BCS computes uncertainty estimates enabling a posterior predictive 

distribution 

Comparison of l1-minimization CS and BCS algorithms 
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•  Multiscale-Multiphysics simulations often rely on subgrid models, based on 
•  First principles or other higher-fidelity simulations 
•  Observational data 

•  To asses predictive fidelity of overall simulation, need to 
•  Properly calibrate subgrid models 
•  Propagate uncertainty in subgrid models across scales (upscaling) 

•  High Dimensionality 
•  Gradient-enhanced interpolants 
•  Local error estimation with hierarchical 

value/gradient surpluses 
•  Compressive sensing for sparsity detection 

•  Data characterization: 
•  Data-Free Inference to handle missing data 
•  Random field representations 

•  Predictive model calibration: 
•  Subgrid model upscaling Smooth 

Nonsmooth 
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Data-Free Inference (DFI) 

Inference from data with standard deviations 
but unknown number of samples  

•  Inputs often specified incompletely in the literature 
•  Mean and confidence interval provided, but no covariance. Original 

data missing. 
•  Data specified as mean and standard deviation, but number of 

samples missing 
•  Overall output uncertainty depends strongly on joint 

distribution of input parameters 
•  DFI infers joint distribution of parameters based on available 

information 
•  Pool family of posteriors that are consistent with given information 

[Berry et al., JCP, 2012] 
•  Application to 

•  Inference of chemical kinetics 
•  Inference from data products (processed raw data) 

Random Field Characterization 

2D Gaussian Process realization 

•  Random fields are conveniently represented with 
Karhunen-Loève Expansions (KLEs) 

•  Enables dimensionality reduction 
•  KLEs require a covariance matrix 

•  Sample covariance matrix requires large ensemble of 
realizations before eigenfunctions are smooth 

•  Sometimes very few samples are available 
•  Ongoing work on estimation of covariance matrices 

from few realizations 
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