
Tool Integration and Autotuning
for SUPER Performance Optimization

Allen D. Malony, Nick Chaimov University of Oregon
Mary Hall University of Utah
Jeff Hollingsworth University of Maryland
Boyana Norris Argonne National Laboratory
Gabriel Marin Oak Ridge National Laboratory

!""#$%&'()*

+,&-./,0,)1*

!)-$-**+(3,#$)4*

!.1(1.)$)4*

+.#'5
678,%'9,*

6"'0$:&'()*

!"#$%#&'()"*
+("#,-*

."/010"()"*

6"'0$:,3*
!""#$%&'()*

Active Harmony

CHiLL

ORIO

MIAMI

TAU Integration

Introduction

Methods for performance optimization of petascale applications must address
the growing complexity of new HPC hardware/software environments that
limit the ability of manual efforts in successful performance problem triage,
software transformation, and static/dynamic parameter configuration. Greater
performance tool integration and tuning process automation are necessary to
manage and share performance information, to generate correct multiple
code variants, to conduct controlled performance experiments, and to
efficiently search and discover high-performant solutions, thereby improving
performance portability overall. SUPER is advancing autotuning capabilities
through the coupling of performance measurement, analysis, and database
tools, compiler and program translators, and autotuning frameworks.

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Computing Research

Web-based User Interface showing selected
configurations and performance evolution

Auto-tuning Search Engine

Supports multiple search algorithms
• Parallel Rank Order
• Nelder-Mead
• Exhaustive
• Random

Allows Parallel Search
• Each node can run a different configuration

> ./tuna -i=tile,1,10,1 -i=unroll,2,12,2 -n=25 matrix_mult -t % -u
%	

Parameter	
 1	

Low:	
 1	

High:	
 10	

Step:	
 1	

Parameter	
 2	

Low:	
 2	

High:	
 12	

Step:	
 2	

Command	
 line	
 to	
 run	

%	
 -­‐	
 replaced	
 by	
 	

	
 	
 	
 	
 	
 	
 parameters	

Tuna: Command line tool makes
auto-tuning setup easy

Case Study: Hierarchical-grid electronic-structure solver

7 parameter search space
•  Coarse-grain grid {x, y, z}
•  Procs per coarse-grain grid node
•  Fine-grain grid {x, y, z}

64-node suitability tests
•  Wall-time recorded for 14 runs
•  Average - 3:48:09
•  Standard deviation - 0:56:21

Outlined
Function

Selective Instrumentation
File (specifying parameters

to capture)

Instrumented
Variant

tau_instrumentor

Parameterized
Performance Profile

execute

PerfDMF
TauDB

parameters
from TauDB

CHiLL
Recipes

Search Driver
(brute force or Active

Harmony)

code variant

TAUdb

CHiLL

Orio Code Generator

Experiment

TAU Metadata Entries

Transformations

Execution Time
Writes

CUPTI callback
measurement library

TAU Profiles

TAUdb

Writes

Uploaded

Links at Runtime

Code (e.g., C, Fortran)
with Embedded DSL

Annotations
DSL

Parser

Code
Transformations

Empirical
Performance
Evaluation

Sequence of (Nested)
Annotated Regions

Transfomed Code Code
Generator

Optimized
Codebest performing version

Tuning
Specification

Search
Engine

CUDA
FortranC

int nrows=m*n;
int ndiags=nos;
/*@ begin Loop(transform CUDA(threadCount=TC, blockCount=BC,

 preferL1Size=PL, unrollInner=UIF)
for(i = 0; i <= nrows-1; i++) {
 for(j = 0; j <= ndiags-1; j++){
 col = i + offsets[j];
 if (col >= 0 && col < nrows)
 y[i] += A[i+j*nrows] * x[col];
 }
}
) @*/

Performance of autotuned sparse matrix-vector product for an Intel Xeon
(dual quad-core E5462 processors), 2.8GHz; GPU: NVIDIA Fermi C2070

!"##$%##&'

!"##$%##!'

!"##$(###'

!"##$(##!'

!"##$(##&'

)&
*)
&'

+,
*+
,'

!&
-*
!&
-'

&.
+*
&.
+'

.!
&*
.!
&'

!+
*!
+*
!+
'

)&
*)
&*
)&
'

+,
*+
,*
+,
'

!&
-*
!&
-*
!&
-'

&.
+*
&.
+*
&.
+'

!"
#$
%&

'(
)*
+,

#-
).'
/0
12
,
+..
+3
#$
'(

43
5)

67+4)8+9#)

/012' 3456785$'9:58;'

“Autotuning stencil-based computations on GPUs.” A. Mametjanov, D. Lowell, C.-C. Ma, and B.
Norris. Proceedings of IEEE Cluster 2012.

DSL
Parser

Code
Transformations

Empirical
Performance
Evaluation

Sequence of (Nested)
Annotated Regions

Transfomed Code Code
Generator

Optimized
Codebest performing version

Tuning
Specification

Search
Engine

CUDA

Key Ideas

DSLs enable
  Generation of high-performance implementations

targeting specific architectures
  A larger set of transformations than general-

purpose languages
  Programming productivity and portable

performance
  Integration of tuned code back into legacy

software

Autotuning requires numerical optimization
  Empirical tuning search space cannot be

searched exhaustively
  Ad-hoc techniques unlikely to find high quality

minimum

http://tinyurl.com/OrioTool

x86 object code

CFGs, edge
counts

PIN MIAMI code IR
instr /μop / registers

XED

Machine model (MDL) Loop nesting structure
Dependence graph at loop level

Dependence graph customized for machine
instruction latencies, idiom replacement

Memory reuse
distance analysis

PIN

Set assoc. cache miss predictions
data reuse insight

Performance predictions, performance limiters,
potential for performance improvement

map metrics to source code and data structures

modulo scheduler
binutils

XML performance database/tuning recipes hpcviewer

Approach
Extract static and dynamic characteristics from optimized
x86-64 application binaries

•  Frequency of executed paths through the binary
•  Control flow graph, loop nesting structure
•  Instruction mixes, instruction schedule dependencies
•  Data reuse and memory access patterns

Machine description language used to define models of target
architectures
Map application model onto an architecture model, understand
resources mismatch

Impact
Automatic construction of machine-independent application
performance models
Pinpoint and rank opportunities for application performance
tuning
Compute code transformation recipes for performance
optimization

Machine Independent Application Models for performance Insight

Case study: understand the performance bottlenecks of a naïve matrix multiply code Compute application tuning recipes
Analyze full application binaries
Reschedule application instructions for the target
architecture

•  Understand inefficiencies due to low ILP, failed
vectorization, resource contention

Perform memory reuse simulation
Compute “loop balance”, compare with peak
bandwidth

•  Understand if instruction schedule inefficiencies
are on critical path

Analyze data reuse patterns to look for improvement
opportunities
Suggest code transformations

In the absence of cache
misses, the main
performance bottleneck is
the issue bandwidth on
the Load/Store units
- Apply tiling for register
reuse

About 98% of cache
misses and 49% of
TLB misses are due
to long reuse within
the 3rd level loop

Loop at level 1 carries most of the cache misses.
These misses are on accesses to array ‘b’.
-  Move the level 1 loop to an inner position, or
-  Block the level 2 loop and move the loop
over blocks outside of the level 1 loop.

Approach
Integrate TAU measurement in autotuning workflow
• CHiLL + Active Harmony, Orio
• ROSE outlining for instrumenting code variants
• TAU parameter profiling for specialization
Capture performance experiments with code variants
• Store data /metadata in database (TAUdb)
Mine performance data
• Feedback back directly to autotuning search
• Apply machine learning to generate decision trees
Apply decision tree knowledge to specialize application

profile data
and metadata

WEKA

decision tree
induction
algorithm

ROSE-based
Code

Generation
Tool

Code Variants
Code Variants

Code Variants
Code Variants

Wrapper Function

PerfDMF
TauDBTAUdb

TAU integration
with Orio

TAU integration
with CHiLL and
Active Harmony

Decision tree
analysis and
specialization

Example annotation: Sparse matrix-vector
product in structured grid PDE solution

CHiLL is a transformation and code generation framework designed specifically for
compiler-based auto-tuning; CUDA-CHiLL generates CUDA for Nvidia GPUs. A
layered design permits users to reach into the compiler’s algorithms for code mapping
to explore a search space of possible implementations of a computation, making it
possible to achieve performance comparable to manual tuning:
• Transformation recipes describe code optimizations to be composed; a set of
parameterized recipes form a search space.
• High-level recipes can target lower-level transformation sequences implemented by
an expert user, facilitating encapsulation for less-expert users.
• An underlying polyhedral code generator and transformation system robustly
implements the parameterized code transformations.
The figure below shows the performance gains from applying CHiLL to optimize
PETSc functions in the context of three scalable applications run on hopper at NERSC.

1	

1.05	

1.1	

8	
 16	
 32	
 64	

Uintah	
 -­‐	
 Methane	
 Fire	

Container	
 140x140x140	

Speedup	

Specialized	
 Library	
 –	
 PGI	
 Specialized	
 Library	
 –	
 Intel	

