
When a single objective, such as execution time, is available, the autotuning search problem can be posed as 

a numerical optimization problem. However, it is increasingly common to have multiple objectives, such as 

execution time, energy consumption, resilience to errors, power demands, and memory footprint. When the 

relative weights or constraints on these objectives are not known at search time, one must pose the autotuning 

search problem as a multi-objective optimization problem. We describe the optimization framework for search, 

discuss some of the potential tradeoffs among multiple objectives, and provide empirical evidence that such 

tradeoffs do exist in practice.  

Optimization as Optimization 

Multi-objective Optimization Exploring Tradeoffs in SUPER Abstract 

1.5X speedup evaluating  

40 of 107 possible variants 

THE OBJECTIVE 

• A single,  real-valued performance objective 

• Can capture average, median, quantile (e.g., worst-case) empirical performance 

• Often stochastic/noisy (from measurement and/or run) 

• Depends on machine and input size (or distribution over inputs) 

• Examples: run time, failure rate, expected run time 

Collecting Objective Metrics 

The problem of empirically optimizing a code can be posed as the mathematical optimization problem 
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THE DECISIONS 

•Binary (compiler type, +examples) 

•Integer (unroll factor, register tiling, +examples) 

•“Continuous” (algorithmic parameters, internal 

tolerances) 

•Each x generates a code variant (through source-to-

source/compiler-based transformation, etc.) 

 

THE CONSTRAINTS 

•Ensuring feasibility of transformation 

•Correctness of output, maximum temperature, etc. 

 

Search spaces are enormous, 

examining all possible variants 

unnecessary and highly inefficient 

(if not impossible). 

GOAL:  
 

Use formulation as a mathematical problem to leverage 

modern derivative-free optimization algorithms for  

obtaining approximate minimizers while examining a tiny 

number of variants. 

Architecture Kernel input size 

Arises when several objectives need to be to optimized simultaneously 
•No weights given a priori 

•Sometimes objectives are correlated and satisfied  

simultaneously; otherwise there are tradeoffs 

•Code variants now live both in a decision  

space and in an objective space 

 

• Code variants for which no 

other variant is better in all 

objectives are said to be 

nondominated or Pareto 

optimal 

• Pareto optimal variants can be 

used to optimally schedule jobs 

on leadership computing 

facilities given constraints on 

time or energy 

Objective space 

Decision space 

• Properties such as monotonicity can often be observed 

with respect to some decisions 

• Time decreases in a monotone fashion in number 

of threads, for many ranges of thread count 

• Power increases in a monotone fashion in number 

of threads 

• Tradeoffs between power and time can be observed for 

many different tuning spaces 

• Finding Pareto optimal points can be made faster by 

exploiting known properties, such as monotonicity, as 

well as by discovering latent structure in the objectives 

Whether tradeoffs between energy and time exist or “race-to-idle” conditions are present depends on  computational 

workloads, architectural features,  and the tunable decisions 

Many other sets of performance and power-based simultaneous objectives are of interest 

Future Investigations 
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• Develop multiobjective optimization algorithms for autotuning search 

• Indentify appropriate use cases 

• Study other tradeoffs 

• Resilience versus memory footprint 

• Resilience versus execution time 

• Memory footprint versus execution time 

• Memory footprint versus energy 

 


