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Pipelined Krylov Solvers 

 The use of global all-to-all communication to orthogonalize and normalize Krylov 
vectors in each iteration of GMRES is becoming a bottleneck on modern HPC 
systems. 

 The development of a non-blocking version of GMRES is crucial for future good 
performance. 

 

 

 

 Changing the order of the operations within GMRES as described below can hide 
communication latency, system noise and load imbalance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2D Bratu problem solved with a Newton-Krylov method preconditioned by block 
Jacobi/ILU(0). GMRES restart parameter: 30 

 Spgmres: pipelined GMRES with blocking MPI_Allreduce  

 Pgmres: pipelined GMRES with nonblocking MPIX_Iallreduce  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Overall best performance is achieved by reducing the number of blocking 
operations and additionally using non-blocking communication 
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Multi-threaded Matrix Kernels 

 Good sparse linear solver performance requires highly efficient sparse matrix 
kernels 

 An abstract task based model for shared memory computation  is developed, 
which is independent of the threading runtime. 

 

 

 

 Dynamic dependencies, as dependencies are not known a priori 

 Recursive parallelism to adapt the implementations to the hierarchical 
architectures 

 Composable constructs:  need  parallel_for inside a task, and ability for tasks to 
                  create other tasks)  

 

 

 

 Using static analysis of the input graph for matrix. 

 Static analysis possible using graph ordering methods. 

 Currently using a custom version of Scotch  
graph partitioner to find tasks corresponding to UMA  
regions. 

 Number of tasks equals the number of UMA regions. 

 Number of leaves equals the number of threads. 

 

 

 

 

 Uses Intel TBB with automatic partitioner within the parallel_for  of the UMA 
regions 

 The work within each UMA region is completely parallel. 

 Requires more code than just using a parallel_for 

 May lead to more overhead than using a parallel_for 

 Task stealing is limited to threads within the UMA regions 

 
 

 

 

 

 

 

 

 

 

 

 

 Implementation of SpMV with one task  per UMA region and parallel_for within 
the NUMA region 

  Reasonable scalability for up to eight threads on Intel Nehalem-EX. (3-5 times) 

 

 

 

 

 

 

 

Linear System Solution in FASTMath Software 

The efficient implementation of sparse linear solvers is crucial to enabling many large-scale simulations.  The new generation of high performance computers with multi-/many core nodes and million-way 
parallelism presents new challenges for the linear solvers in the FASTMath software tools, PETSc, SuperLU, Trilinos and hypre. To better utilize the new hardware resources, we have focused our efforts on 
multi-threading key matrix kernels, hiding communication in Krylov solvers, the introduction of new scheduling strategies and  lightweight OpenMP threads in  sparse matrix factorizations, and the 
reduction of communication in algebraic multigrid methods. 

More Information: http://www.fastmath-scidac.org or contact Ulrike Yang, LLNL, yang11@llnl.gov, 925-422-2850 

       

FASTMath Team Members: Jed Brown, Rob Falgout, Jonathan Hu, Sherri Li, Siva Rajamanickam, Jacob Schroder, Barry Smith, Ichitaro Yamazaki, Ulrike Yang  

 

 

 Algebraic multigrid (AMG) methods have shown excellent weak scalability on 
distributed-memory architectures, however the increasing communication 
complexities on coarser levels have led to decreased performance on modern 
multicore architectures. 

 The development of new methods with reduced communication is essential. 
 

 

 

 Parallel coarsening is stopped earlier on  
a finer level k; all data of the system on  
level k are distributed to all processes still  
containing grid points, and sequential AMG is 
used to solve the system on level k redundantly. 

 

 Achieved up to 2x speedup of AMG using redundant coarse grid solves (table reports 
total speedup for AMG-CG for two problems on three different architectures with 
Infiniband fat-tree networks). 

 

 

 

 

 

 

 

 

 

 Choose non-Galerkin coarse-grid for parallel efficiency by sparsifying  𝐴𝑔 = 𝑃𝑇𝐴𝑃                       

to yield a new coarse-grid operator 𝐴𝑐 

 Raises critical issues related to AMG theory: 
- Requires  good spectral equivalence: 𝐴𝑐 ≈ 𝐴𝑔, 𝐼 − 𝑃(𝐴𝑐)

−1𝑃𝑇𝐴 

- Algorithm heuristic:   ||𝐼 − 𝐴𝑐(𝐴𝑔)
−1||2 ≤ 𝜃                                  

- Provably implies AMG convergence 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Communication Reducing Algebraic 
Multigrid Methods 
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Pipelined 

 norm and projection start before 
applying operator, not needed until 
afterward 

 result of projection used to correct  

  

 Develop scalable sparse direct linear solvers that are essential in the 
simulations of the numerically challenging problems, e.g., accelerator, fusion, 
quantum chemistry, and fluid mechanics. 

 New performance challenges arise due to memory and bandwidth constraints 
on modern HPC systems with many nodes and many cores per node. 

 

 

 

 Implemented new static scheduling and flexible look-ahead algorithms that 
reduced the processors idle time and shortened the length of the critical path.  
The parallel factorization achieved nearly 3x speedup on thousands of cores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Introduced light-weight OpenMP threads in MPI processes.  

 each MPI process updates independent supernodal blocks 
-> use OpenMP threads to update these blocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Enabled use of all cores per NUMA node , and significantly reduced memory 
footprint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factorization time improvement of Version 3.0 over previous Version 2.5.  
Hopper at NERSC, Cray XE6.  

Accelerator Omega3P, dimension 2.7 M  Fusion M3D-C1, dimension 801 K  

Factorization time 

Fusion (unsym), n=801K, fill-ratio=10 

 

Memory usage 

Fusion (unsym), n=801K, fill-ratio=10 

serial AMG 
coarse solve 

all-gather 
at level k 

  
Results: 3D Diffusion 

 Classical AMG: 
scenarios 1, 2 

 Proposed approach: 
scenarios 3, 4 

 
 
Results:  3D anisotropy  
on unstructured grid 

 Convergence for Scenario 4  
comparable to classical AMG  
with substantially reduced stencil size 

 

No. of cores 

7pt 3D Laplace problem 27pt stencil 

Hera Atlas Coastal Hera Atlas Coastal 
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432 

1024 

2000 

1.77 
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1.88 

1.79 

1.11 

1.11 

1.25 

1.18 

1.62 

2.07 

2.09 

2.04 

1.40 

1.39 

1.57 

1.62 

1.03 

1.20 

1.25 

1.25 

1.31 

1.64 

1.93 

1.66 

Objectives 

Required Abstractions 

Generation of Tasks within a Kernel 

Sparse Matrix Vector Multiplication – Performance Results 

Pipelined GMRES 

Objectives 

Pipelined GMRES – Performance Results 

Objectives 

New Scheduling Strategies 

Threading 

Objectives 

Non-Galerkin AMG 

Redundant Coarse Grid Solve 

mailto:dyang11@llnl.gov

