
Scheduling Strategies and Threading for
Sparse Matrix Factorizations

• ***

• ****

Pipelined Krylov Solvers

 The use of global all-to-all communication to orthogonalize and normalize Krylov
vectors in each iteration of GMRES is becoming a bottleneck on modern HPC
systems.

 The development of a non-blocking version of GMRES is crucial for future good
performance.

 Changing the order of the operations within GMRES as described below can hide
communication latency, system noise and load imbalance.

 2D Bratu problem solved with a Newton-Krylov method preconditioned by block
Jacobi/ILU(0). GMRES restart parameter: 30

 Spgmres: pipelined GMRES with blocking MPI_Allreduce

 Pgmres: pipelined GMRES with nonblocking MPIX_Iallreduce

 Overall best performance is achieved by reducing the number of blocking
operations and additionally using non-blocking communication

.

Multi-threaded Matrix Kernels

 Good sparse linear solver performance requires highly efficient sparse matrix
kernels

 An abstract task based model for shared memory computation is developed,
which is independent of the threading runtime.

 Dynamic dependencies, as dependencies are not known a priori

 Recursive parallelism to adapt the implementations to the hierarchical
architectures

 Composable constructs: need parallel_for inside a task, and ability for tasks to
 create other tasks)

 Using static analysis of the input graph for matrix.

 Static analysis possible using graph ordering methods.

 Currently using a custom version of Scotch
graph partitioner to find tasks corresponding to UMA
regions.

 Number of tasks equals the number of UMA regions.

 Number of leaves equals the number of threads.

 Uses Intel TBB with automatic partitioner within the parallel_for of the UMA
regions

 The work within each UMA region is completely parallel.

 Requires more code than just using a parallel_for

 May lead to more overhead than using a parallel_for

 Task stealing is limited to threads within the UMA regions

 Implementation of SpMV with one task per UMA region and parallel_for within
the NUMA region

 Reasonable scalability for up to eight threads on Intel Nehalem-EX. (3-5 times)

Linear System Solution in FASTMath Software

The efficient implementation of sparse linear solvers is crucial to enabling many large-scale simulations. The new generation of high performance computers with multi-/many core nodes and million-way
parallelism presents new challenges for the linear solvers in the FASTMath software tools, PETSc, SuperLU, Trilinos and hypre. To better utilize the new hardware resources, we have focused our efforts on
multi-threading key matrix kernels, hiding communication in Krylov solvers, the introduction of new scheduling strategies and lightweight OpenMP threads in sparse matrix factorizations, and the
reduction of communication in algebraic multigrid methods.

More Information: http://www.fastmath-scidac.org or contact Ulrike Yang, LLNL, yang11@llnl.gov, 925-422-2850

FASTMath Team Members: Jed Brown, Rob Falgout, Jonathan Hu, Sherri Li, Siva Rajamanickam, Jacob Schroder, Barry Smith, Ichitaro Yamazaki, Ulrike Yang

 Algebraic multigrid (AMG) methods have shown excellent weak scalability on
distributed-memory architectures, however the increasing communication
complexities on coarser levels have led to decreased performance on modern
multicore architectures.

 The development of new methods with reduced communication is essential.

 Parallel coarsening is stopped earlier on
a finer level k; all data of the system on
level k are distributed to all processes still
containing grid points, and sequential AMG is
used to solve the system on level k redundantly.

 Achieved up to 2x speedup of AMG using redundant coarse grid solves (table reports
total speedup for AMG-CG for two problems on three different architectures with
Infiniband fat-tree networks).

 Choose non-Galerkin coarse-grid for parallel efficiency by sparsifying 𝐴𝑔 = 𝑃𝑇𝐴𝑃

to yield a new coarse-grid operator 𝐴𝑐

 Raises critical issues related to AMG theory:
- Requires good spectral equivalence: 𝐴𝑐 ≈ 𝐴𝑔, 𝐼 − 𝑃(𝐴𝑐)

−1𝑃𝑇𝐴

- Algorithm heuristic: ||𝐼 − 𝐴𝑐(𝐴𝑔)
−1||2 ≤ 𝜃

- Provably implies AMG convergence

Communication Reducing Algebraic
Multigrid Methods

0

2

4

6

8

10

12

14

16

18

n=1 n=2 n=4 n=8 n=16

nrhs=4

G
F

L
O

P
S

/s
ec

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

n=1 n=2 n=4 n=8 n=16

nrhs=1

G
F

L
O

P
S

/s
ec

af_shell3

ldoor

bone010

kkt_power

Conventional

orthogonalize

normalize

Pipelined

 norm and projection start before
applying operator, not needed until
afterward

 result of projection used to correct

 Develop scalable sparse direct linear solvers that are essential in the
simulations of the numerically challenging problems, e.g., accelerator, fusion,
quantum chemistry, and fluid mechanics.

 New performance challenges arise due to memory and bandwidth constraints
on modern HPC systems with many nodes and many cores per node.

 Implemented new static scheduling and flexible look-ahead algorithms that
reduced the processors idle time and shortened the length of the critical path.
The parallel factorization achieved nearly 3x speedup on thousands of cores.

 Introduced light-weight OpenMP threads in MPI processes.

 each MPI process updates independent supernodal blocks
-> use OpenMP threads to update these blocks

 Enabled use of all cores per NUMA node , and significantly reduced memory
footprint.

Factorization time improvement of Version 3.0 over previous Version 2.5.
Hopper at NERSC, Cray XE6.

Accelerator Omega3P, dimension 2.7 M Fusion M3D-C1, dimension 801 K

Factorization time

Fusion (unsym), n=801K, fill-ratio=10

Memory usage

Fusion (unsym), n=801K, fill-ratio=10

serial AMG
coarse solve

all-gather
at level k

Results: 3D Diffusion

 Classical AMG:
scenarios 1, 2

 Proposed approach:
scenarios 3, 4

Results: 3D anisotropy
on unstructured grid

 Convergence for Scenario 4
comparable to classical AMG
with substantially reduced stencil size

No. of cores

7pt 3D Laplace problem 27pt stencil

Hera Atlas Coastal Hera Atlas Coastal

128

432

1024

2000

1.77

2.00

1.88

1.79

1.11

1.11

1.25

1.18

1.62

2.07

2.09

2.04

1.40

1.39

1.57

1.62

1.03

1.20

1.25

1.25

1.31

1.64

1.93

1.66

Objectives

Required Abstractions

Generation of Tasks within a Kernel

Sparse Matrix Vector Multiplication – Performance Results

Pipelined GMRES

Objectives

Pipelined GMRES – Performance Results

Objectives

New Scheduling Strategies

Threading

Objectives

Non-Galerkin AMG

Redundant Coarse Grid Solve

mailto:dyang11@llnl.gov

