
FASTMath Team Members: 

Numerical Algorithm for Large-scale Eigenvalue 
Calculation 

Develop next generation eigensolvers that can exploit multiple levels of concurrency on multi/many-core systems and leverage highly 
efficient computational kernels to enable large-scale SciDAC simulations on DOE leadership class supercomputers. 

More Information: http://www.fastmath-scidac.org or contact Chao Yang, LBNL, CYang@llnl.gov, 510-486-6424 
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Eigensolvers in SciDAC Applications  Spectrum Slicing 

 Eigensolvers are important tools for a 

number of SciDAC applications: 

• Accelerator modeling 

• Finite element cavity modeling  

• Nonlinear eigenvalue problem 

• Material Science and Chemistry 

• Many-body Schrodinger’s equation 

• Density functional theory methods 

• Both ground and excited states 

• Nuclear Physics 

• Nuclear configuration and 

interaction 

Implicitly Restarted Lanczos/Arnoldi 

Multiple shift-invert Lanczos Contour Integral Based Subspace Iterations Scope of Work 

Chao Yang, Hasan Metin Aktulga, Esmond Ng (LBNL) 

 When a few eigenpairs of a symmetric and non-symmetric 

(sparse) matrix are needed, the implicitly restarted Lanzos or 

Arnoldi (IRL/IRA) iteration (implemented in ARPACK [1]) is 

often the method of choice for computing these eigenpairs. 

• The advantages of IRL/IRA are  

• Rapid convergence due to (implicitly) 

filtering, ideal for computing a few 
eigenpairs 

• Low dimensional Krylov subspace, hence 
low cost of orthogonalization. 

• However, there are a number of drawbacks: 

• Limited parallelism (difficult to speedup 

sparse matrix multiplication on 100+ 
processing units) 

• Difficult to take advantage of a 
preconditioner if available 
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• Compute eigenvalues within each interval by shift-invert 

Lanczos, contour integral based subspace iteration, 

Jacobi-Davidson etc. 

• Additional level of (coarse grained) parallelism 

• Limit the size of each interval to keep the 

orthogonalization and Rayleigh-Ritz cost low 

Key issues to consider: 

• Eigenvalue distribution (density of states estimation) 

• Size of each interval 

• How many processors should be assigned to each 

interval? 
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Subspace Iteration: 

1. Generate starting guess V 

2. While (not converged) do: 

a) W =PV 

b) V = qr(W) 

c) Check convergence 

3. End while 

Pros: 

• Take advantage of multiple  right-
hand sides 

• Convergence more predictable 

Cons: 

• More factorizations per interval  
(complex arithmetic) 

• Spurious eigenvalues 

• Limited scalability in triangular 
substitution 

• Eigenvalues close to a target shift converge rapidly 

• Must solve a number of linear equations in sequence 

• LDLT factorization of 𝐴 − 𝜎𝐼.  More costly, have 

better parallel scalability 

• Triangular substitutions are relatively cheap, but 
have limited parallel scalability 

• Must check for missing eigenvalues or double 
counting 

• Optimize spectrum division and resource allocation for 

leadership class machines 

• Early deflation, multiplicity detection 

• Replace direct solves with iterative solves in shift-invert 

Lanczos and contour integral based subspace iteration 

• Efficient algorithms for nonlinear eigenvalue problems 

(nonlinear Arnoldi, Jacobi-Davidson) 

• Convergence issues and preconditioning for nonlinear 

eigenvalue problems 

• Penalty method for trace minmization (reduce the 

number of Rayleigh-Ritz calculation and leverage highly 

efficient dense linear algebra Kernels) 

• Overlap communication with computation in iterative 

eigensolvers 
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