Runtime Roadmap

Chair: Kathy Yelick

Roadmap focus points

Bounding the scope of Runtime
Convergence

Research roadmap

Industry Integration — buy-in and help

Bounding Scope: What makes sense
organizationally?

* Programming environment runtime
— Application Facing Runtime
— Needs to include communication
— May need to co-exist and interact (progress, etc.)

e System Facing Runtime
— OS, Long-lived, Workflow tools, in-situ
— Provides protection between application

— Hypervisors, virtualization, dockers, etc. complicates
this disucssion

— Node OS, System OS, Enclave OS
— Needs to arbitrate and ultimately own resources

 There shouldn’t be a hard boundary

 But we need to understand what we’re talking
about

What is the process for convergence?

e Can we identify the “motifs” of resource
usage?
— Static, semi-dynamic, fully-dynamic?
— Progress strategies

— Embeddable into complex distributed systemes:
Relevant to HPC vs. commercial world?

OS/R Grand Challenges

Can your runtime work with multiple PM/Es?

Can different runtimes (or components) use
— Shared hardware resources
— Shared data from multiple applications

Different usage models (application patterns)
Can your runtime be library-ized?

— Don’t get to own main()

How does data move between runtimes?

Convergence

* Need to map efforts to scoping — take inventory
— What are the unique aspects of each
— Is it application / hardware specific?

e How do we converge efforts and leverage

— Need to start by agreeing on a hardware arbitration
interface

— Key to adoption (interoperation with existing runtimes)

— Converge on a few runtimes that interoperate
e Does this constrain solutions too much?
e |t would be nice if you could build a new runtime?
* At what level do they need to interoperate (space / time sharing)?

e Does a composable service model address this?
— Still need to define layers and interfaces

How to get interoperability?

e Need enough experience to define APlIs
— Backplane in Argo / Hobbes is good example

— Everyone wants to understand underlying hardware
(locality / processing)

— Interconnects are harder (how to virtualize endpoints)
— New types of memory are not well understood yet
— Types of user-level threads need to be understood

e Redundancy will become clear from process

e Get narrow communities together to understand
their similarities and differences

How to Transition from Research to Development

Production Stack Ongoing Research

Resilience
Applications

Compilers

HL Programming Model

Energy
Management
Scientific Libraries Languages /

PModel Runtime (node PModels
and communication) Schedulers

OS-Runtime

Compilers/Translators

Harddware

GP Compilers

e New programming constructs and implementation techniques
transition from research to production based on:

— Demonstrated application need and feasibility (performance,...)
e Research provides risk tolerance and upside potential

9 DEGAS Overview

How to Stage Research and Development?

Runtime

10 DEGAS Overview

Industry Integration — buy-in and help

e How do we integrate with other ECI| efforts?
e How do we integrate / leverage with industry?

e Would like to separate:

— Are there open research questions?
— Who will build these

Industry interactions

Industry needs to be involved (as in co-design)
— Companies vary on willingness to sharing ideas and collaborators

— What role do we have in the OS?
e Influence industry

 What can we leverage
Phases

— Research phase: work with vendor to understand what both
industry / us are researching

— Demonstrate: Would like to boot our own research OS as testbeds
(requirements in RFPs)

— Deployment and support: We require functionality developed in
research on vendor-provided systems

Resilience affects everything

Timing of influence is important: silicon longer lead time than
operating systems, etc.

Roadmapping

Start with process to understand differences and
similarities for narrow problem

— Terminology for communication
|dentify opportunities for

— Common interfaces; may have different ones in context

— Common implementations; may not want to rebuild
something that others have

Need to do this without constraining innovation

People need to come back with innovations and
convince the rest of the community of value

— Decisions on common APIs, etc. may need to be revisited

Age-Old Debate

We need to be more precise in our terminology and discussions

Overarching Questions

What do we mean by Runtime?

 There are two levels:
— Within the application
— Management of “executables” across the system

e There was also a distinction between:
— User space
— Privileged

e Focused on user space / within an application, but noted:
— The interaction with the OS is clearly important

— We need to think carefully virtualization as in commercial
clouds data center

— Had some discussions on issues related to storage and
dataflow, which are external

How Dynamic?

How dynamic should an exascale runtime be?
— When are decisions made?

— What information is used to make load balancing and
scheduling decisions?

— Examples: Before runtime, at job launch time, at discrete points
mid-execution (which can be globally), continuously on-the-fly
(which probably means locally or at least hierarchically)

Is a dynamic runtime capable of delivering exascale
performance?

— Or does the cost overwhelm the benefits?
Is a dynamic runtime required for exascale performance?

— Would dynamic control yield a significant improvement in
operational concurrency?

Does a dynamic runtime make programming easier?

How much parallelism?

e How much parallelism should be exposed to the
runtime?

— A programmer may expose all parallelism available in
the application, but have it throttled (chunked) by the
programming model implementation

— Sometimes (usually?) the amount of parallelism is
data dependent, so cannot be determined statically

 Both extremes are probably impractical:
— Static: runtimes are data size dependent already

— All concurrency: at the level of individual instructions,
without an static information, e.g., partitioning, this
would overwhelm a runtime

Domain specificity

e Should the runtime be domain-specific?

— What mechanisms should be domain-
independent?

— What mechanisms are domain-specific?

e How is domain knowledge passed to the
runtime?
— How to deal with load balancing for specific

problems? Is it a generic DAG scheduling
problem, or is it specialized to a class of DAGs?

Runtime Decomposition

 The runtime has to be well integrated, but
some features may not exist:

— On all hardware
— In all applications
— Or in all parts of the applications

e How can you make it composable?

— What is the smallest runtime you can give me and
can it be used for one task?

— How to make it decomposable? E.g., Burst buffers

Storage System Interaction

What is the relationship between programming
model runtime and external data services?

— How does the runtime interact with the storage
subsystem?

What runtime support is required for complex
workflows?

Should complex workflows be supported

— On Exascale technology systems? .
Requirements

— At full scale? gathering

— |Is this a productivity issue for scientists?

System Interaction

e What does other systems software expect
from the runtime (fault detection, etc.)

e What does the runtime expect from the other
system software?

Resilience

What failures (if any) can the runtime system:

— Hide from higher level software / programming?

— Contain from other parts of the computation

— What are techniques for hiding

What failures (if any) should the runtime expose?
— How should the runtime report failures?

What failures (if any) should the runtime ignore?
What is acceptable behavior? Requirements
— E.g., Self-driving cars; Mars mission gathering

What are the most important types of failures

and their likelihood? (input to runtimes) constraints
gathering

Energy

Should the runtime (which one) manage energy?
Should energy management be:

— Hidden from higher level software / programming?
— Contained from other parts of the computation

How should the runtime report energy issues (DVS,
etc.) to the application?

Do application programmers or P-model ... iements
implementers want to control energy? &thering
What are the knobs and performance payoffs?

Constraints
gathering

Technical Analysis of Existing
Work and Remaining Questions

Program Questions

Why aren’t we answering the questions within
the context of the Xstack prototypes and

ot
W
W

ner runtime research that was done?
nat remains from what was done?

nat do we agree and disagree on?

How do the application drivers benefit (or not)
from the runtime system

Old approaches are not working, but what do
you do? Runtime systems are a candidate.

What Are Next Steps?

Need for analysis of common and distinct concepts;
similarities and differences

Need for case studies of applications |
Requirements

What requirements are we trying to satisfy? gathering
— |Is there a particular class of applications being addressed?
— What can the applications people tell us about their apps?

Need for studies of “emulated” or “projected” exascale
systems Constraints gathering

Need for studies of runtimes on existing systems and
emerging systems (e.g., scratchpad and NVRAM)

Tasking Behavior

 What is appropriate task granularity
— Is this a useful knob?

— Given a software implementation, what is the finest
granularity that can be effective?

— What techniques can be used to lower overhead of tasking?

e Task characteristics What are the
— Run-to-completion vs. preemptible implications for
— Are they allow to mutable external state ? :sdperloagr:zmm'”g
— Is it legal to communicate? application?
— Is it legal to synchronize?
What subsets /

e |f tasks may be descheduled is it: i
— Based on time slicing (non-cooperative) work together?
— Only voluntarily for communication
— For synchronization

DAGs

 DAG characteristics
— Should DAGs be static or dynamic?
— Should they be explicit or implicit

Namespace and Address Space

 Should objects identifiers be global or local?
e Should that be a relocatable name or physical
address?

— What is advantage of relocatable names

— What is the performance implication of data
movement, memory footprint, energy, etc.

e How does the runtime system engage?

Messaging

 Should messaging be active (active message)
— Are there limits in what can be “activated”?

— How are computational / memory resources
managed to execute the active computations?

e Should scheduling be message driven?

Layout and Load Balancing

 Should computation be relocatable?

— Is relocation global (across the system) or local (within
a domain, e.qg., node)?

— Should tasks be first class (nameable)? Do we need a
naming services for tasks as with objects?

— Are tasks and objects the same entity?
 Should the control layout be matched to or

independent of the data layout?

— Should computation follow data?

— Should data follow computation?

— Or something in between?

