
ParalleX/HPX Runtime for Exascale

Thomas Sterling

Chief Scientist, CREST
Professor, School of Informatics and Computing

Indiana University
March 11, 2015

DOE Workshop on Runtime Systems

Motivation

•  Exploit runtime information through introspection to
discover parallelism for scalability and dynamically
manage resources to demand for efficiency

•  Expose limitations of conventional computer architecture
and devise mechanisms for lower overhead and latency

•  Based on a crosscutting execution model to determine
respective roles, responsibilities, and interoperability

•  Serve as a research platform to explore utility, generality,
opportunity, and challenges/limitations

•  Target and enabler for parallel programming models
•  Operation in the presence of uncertainty of asynchrony
•  First conceived in support of HTMT project and Cascade 2

HPX (LSU)

•  First Implementation of ParalleX Execution Model
–  Open source under liberal license (https://github.com/STEllAR-GROUP/hpx)
–  World-wide developer community (~80 contributors over last 7 years)
–  Mentors in the Google Summer of Code Program 2014 and 2015

•  Leaders in distributed task based parallel C++ computing
–  Early implementation of parallel algorithms as proposed to C++ standard

•  Extended to be usable in distributed and asynchronous contexts
•  Extension of standard C++ data structures to distributed case

–  Active participation in C++ standardization committee
•  Scalability and Productivity

–  Fully conforms to and extends the C++ Standard concurrency model and API
to the distributed case

–  Provides users a high level object oriented API with smooth learning curve
from standard C++

–  Enables seamless integration of GPGPU kernels into parallel execution flow
(OpenGL and CUDA)

Applications

S
ys

te
m

H

ar
dw

ar
e

Networks

Collaborative Workflows
R

es
ili

en
ce

P
ro

du
ct

iv
ity

E
xe

cu
tio

n
M

od
el

PM Processor
Cores (P)

Memories
(M) PM PM PM . . . Persistent

Storage

O
pe

ra
tin

g
S

ys
te

m

Lightweight Kernel LWK LWK LWK . . .

I/O Object
Storage
Software

System-Wide OS

R
un

tim
e

S
ys

te
m

s

User
Threads

Global
Address
Space

Synchronization Communication Introspection

E
ne

rg
y

W
or

kf
lo

w

M
an

ag
em

en
t Programming Environment Tools & Libraries

Programming Model

Object Abstraction Languages Parallel Semantics

Distinguishing Features of ParalleX/HPX

HPX Runtime Design

•  Current version of HPX provides the runtime infrastructure as defined
by the ParalleX execution model
–  Compute Complexes (ParalleX Threads) and scheduling
–  Parcel Transport and Parcel Management for message-driven computation
–  Local Control Objects (LCOs) for synchronization
–  Active Global Address Space (AGAS) for system wide naming

HPX: Distinguishing Features (1)
•  Derived within the conceptual context of an execution model
•  Derived within the context of the SLOWER performance model
•  Global Name Space and active global address space
•  ParalleX Processes

–  Span and share multiple hardware nodes
–  hierarchical (nested)
–  First-class objects
–  Support user and node OS requests for global services
–  Supports data decomposition

•  Message-driven computation with continuations
–  Does not always return results to parent thread but migrates

continuations
–  Percolation for moving work to resources such as GPUs

•  Compute complexes extend beyond typical threads
7

ParalleX Compute Complexes

•  Manifest as a variant of threads on conventional
platforms

•  Complexes are first-class objects
•  Unbounded number of complex registers
•  Preemptive, sometimes
•  Internal static dataflow ILP
•  Depleted complexes exhibit LCO synchronization

semantics
•  Can migrate as continuations
•  State-machine definition in and out of runtime system

8

HPX: Distinguishing Features (2)
•  Embedded data-structure (graphs) control objects

–  Resolves arbitration of simultaneous use requests

•  Distributed parallel control state through dynamic graphs of
continuations (futures and dataflow)
–  e.g., graph vertex/links insertion or deletion

•  Copy semantics through Distributed Control Operations
(DCO)
–  Distributed arbitration of access conflicts to structure elements
–  Graph structure changes

•  Suspended (Depleted) threads (compute complexes) serve
as control objects to build continuation graphs
–  Planning
–  Search spaces

•  Responds to OS service requests for multi-node
capabilities

9

ParalleX Computation Complex

-- Runtime Aware -- Logically Active -- Physically Active

AMR in HPX-5

•  Adaptive Wavelets solving the Relativistic
Magnetohydrodynamics equations for a Gamma Ray
Burst Outflow

•  Highly dynamic and adaptive

LULESH

•  Dynamic techniques can match MPI performance, even
for static, uniform computations!

0.00E+00%

5.00E+01%

1.00E+02%

1.50E+02%

2.00E+02%

2.50E+02%

0% 50% 100% 150% 200% 250%

Ru
n$
%m

e$
(s
)$

Max$Cores$

LuleshRunTimesHPXvs.MPI
48$points,$500$itera%ons$

MPI%

HPX%over%Photon%

HPX%over%MPI%

Extensions
•  Power management

–  “Side-Path Energy Suppression”
–  Not funded

•  Reliability
–  CVC-Microcheckpointing
–  Not funded

•  Real-time
–  Semantics of time, progress to goal, priorities
–  NSF sponsored

•  PXFS
–  Data driven mass storage
–  Unified name space
–  NSF sponsored

•  PRIDE
–  System-wide operating system
–  Scales ParalleX processes up 13

Closing Comments
•  Runtime systems only part of total system hierarchical

structure
•  Must be defined/derived in part by support for and

interoperability with:
–  programming model
–  Compiler
–  Locality (node) OS
–  Processor core architecture

•  Architecture will have to be designed to reduce
overheads incurred by runtime systems; e.g.,:
–  Parcels to compute complexes
–  Global address translation
–  Context creation, switching, and garbage collection
–  Data and context redistribution for load balancing 14

