
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 1

Legion: Runtime System

Pat McCormick
Michael Bauer, Sean Treichler, Elliott Slaughter,

Zhihao Jia, Alex Aiken, Sam Gutierrez, Galen Shipman

2015 ECI RTS Workshop
Rockville, MD – March 11-13, 2015

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 2

Legion Infrastructure

Legion High-Level Runtime

Mapping Interface

Mapping InterfaceMapping Interface

Machine ModelMachine Model

Low-Level Runtime (Realm)

GASNet MPI OpenMP CUDA Pthread ?

Legion High-Level Runtime

Mapping Interface

Mapping Interface

Machine Model

Low-Level Runtime (Realm)

GASNet MPI OpenMP CUDA Pthread ?

http://legion.stanford.edu

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 3

Data Model – Logical Regions

 Unbounded set of rows (index
space)

– unstructured, 1D, 2D, 3D, …

 Bounded set of columns (fields)

 Can be partitioned (along index
space)

 Tasks operate on regions:

– Must specify which fields and
privileges. Allows fields to be
“sliced”

 Tasks “launched” in program order
(execution order relaxed based on
dependencies) – out-of-order
processor

Field 1 Field 2 Field 3 Field 4

Index 0

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Index 7

Index 8

…

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 4

Logical Regions (continued)

 Multiple index partitions may be defined
– Index space can be partitioned “by kind” (not

just a regular partition)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 5

Legion Tasks (continued)

Example dynamic execution task
graph – task graph grows wider with

complexity of chemical species.

MPI

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 6

Mapping Interface
 Programmer selects:

– Where tasks run
– Where regions (data) are placed
– How regions are stored in memory

(AoS, SoA, etc.)
– View dependent upon machine model

 Mapping computed dynamically
 Decouple correctness from

performance

6

t1

t2

t3

t4
t5

rc

rw

rw1 rw2

rn

rn1 rn2

$

$

$

$

N
U
M
A

N
U
M
A

FB

D
R
A
M

x86

CUDA

x86

x86

x86

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 7

Realm: Deferred Execution

 All Realm operations are event-based & asynchronous:
– Return an event that triggers when operation is complete
– Events may be passed to other tasks and stored in data

structures

 All Realm operations are deferrable:
– Accept an event (or set of events) as a precondition
– Operation does not start until preconditions have triggered

Realm: An Event-Based Low-Level Runtime for Distributed Memory
Architectures, Sean Treichler, Michael Bauer, Alex Aiken, PACT 2014.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 8

Realm
 Event based, dynamic, explicit representation of inter-

task dependencies to bridge the latency gap
– Events are control dependences only (carry no data) – order

operations, don’t imply data dependencies
– Tens of thousands of unique events per second per node

run A copy
a b run B

run C run D

e1 e2

e4

Event e1 = p1.spawn(A,…, NOEVENT);
Event e2 = a.copy_to(b, e1);
Event e3 = p2.spawn(B,…, e2);
Event e4 = p1.spawn(C,…, NOEVENT);
Event e5 = p1.spawn(D,…, e4);

 Machine model
– Processors (CPU, GPU)
– Memory (distributed,

system, GPU memory,
zero-copy memory)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 9

Events

 Created on demand, owned by the creating node
 Can wait, test on events – prefer use as preconditions
 Can also add custom user-triggered events
 Encodes owner’s ID (upper bits)
 Creation and triggering of an event can only happen once.
 Any number of operations may dependent on an event.

• When do we clean up? Programmer controlled?
• Reference counting overhead too high (esp. on distributed systems)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 10

Problem: Event Lifetimes

 Creating a large
number of events

 Need to reclaim storage

 Manual management

 Reference counting:

– Adds overhead
– Complicated when

event handles stored
in heap & distributed

~1600 events/node/s~130 events/node/s

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 11

Generational Events

 Observation: a fixed-sized
structure can describe:
– One untriggered event
– A large number (e.g. 232-1)

of triggered events

 Event creation can reuse an
existing generational event
– As long as it’s in the triggered

state
– Becomes the next generation

of that event

 Generation number included in
event handles and
subscription/trigger messages

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 12

Benefits of Generational Events
 ~20% of storage of

reference counting
approach

 Without the overhead

 No sensitivity to length
of run

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 13

Some Headaches...
 Mechanisms for pinning memory that can be used by multiple

hardware devices need to be improved. Some of this is on
the GPU/NIC/etc. drivers but anything the OS can do to help
would be nice.

 Error handling and fault detection in operating systems today
are fundamentally broken for distributed systems:
– The way signal handlers run today aren't really designed for

multi-threaded systems and so they employ a stop-the-world
approach that halts all threads within a process.

 All operations should come in non-blocking form (i.e. in the
traditional "non-blocking" definition used by OSes - return
E_AGAIN rather than blocking).

 Dynamic resizing of the initial pinned memory segment would
be nice.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 14

Thank you

Questions?

