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Data Model – Logical Regions

 Unbounded set of rows (index 
space)

– unstructured, 1D, 2D, 3D, …

 Bounded set of columns (fields)

 Can be partitioned (along index 
space)

 Tasks operate on regions:

– Must specify which fields and 
privileges.  Allows fields to be 
“sliced”

 Tasks “launched” in program order 
(execution order relaxed based on 
dependencies) – out-of-order 
processor
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Logical Regions (continued)

 Multiple index partitions may be defined
– Index space can be partitioned “by kind” (not 

just a regular partition)
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Legion Tasks (continued)

Example dynamic execution task 
graph – task graph grows wider with 

complexity of chemical species.

MPI
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Mapping Interface
 Programmer selects:

– Where tasks run
– Where regions (data) are placed
– How regions are stored in memory 

(AoS, SoA, etc.)
– View dependent upon machine model

 Mapping computed dynamically
 Decouple correctness from 

performance
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Realm: Deferred Execution

 All Realm operations are event-based & asynchronous:
– Return an event that triggers when operation is complete
– Events may be passed to other tasks and stored in data 

structures

 All Realm operations are deferrable:
– Accept an event (or set of events) as a precondition
– Operation does not start until preconditions have triggered

Realm: An Event-Based Low-Level Runtime for Distributed Memory 
Architectures, Sean Treichler, Michael Bauer, Alex Aiken, PACT 2014.
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Realm
 Event based, dynamic, explicit representation of inter-

task dependencies to bridge the latency gap
– Events are control dependences only (carry no data) – order 

operations, don’t imply data dependencies 
– Tens of thousands of unique events per second per node

run A copy 
a  b run B

run C run D

e1 e2

e4

Event e1 = p1.spawn(A,…, NOEVENT); 
Event e2 = a.copy_to(b, e1);
Event e3 = p2.spawn(B,…, e2);
Event e4 = p1.spawn(C,…, NOEVENT); 
Event e5 = p1.spawn(D,…, e4);

 Machine model
– Processors (CPU, GPU)
– Memory (distributed, 

system, GPU memory, 
zero-copy memory)
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Events

 Created on demand, owned by the creating node
 Can wait, test on events – prefer use as preconditions
 Can also add custom user-triggered events
 Encodes owner’s ID (upper bits)
 Creation and triggering of an event can only happen once. 
 Any number of operations may dependent on an event.

• When do we clean up?  Programmer controlled?
• Reference counting overhead too high (esp. on distributed systems)
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Problem: Event Lifetimes

 Creating a large 
number of events

 Need to reclaim storage

 Manual management

 Reference counting:

– Adds overhead
– Complicated when 

event handles stored
in heap & distributed

~1600 events/node/s~130 events/node/s
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Generational Events

 Observation: a fixed-sized
structure can describe:
– One untriggered event
– A large number (e.g. 232-1)

of triggered events

 Event creation can reuse an
existing generational event
– As long as it’s in the triggered

state
– Becomes the next generation

of that event

 Generation number included in 
event handles and 
subscription/trigger messages
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Benefits of Generational Events
 ~20% of storage of 

reference counting 
approach

 Without the overhead

 No sensitivity to length 
of run
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Some Headaches... 
 Mechanisms for pinning memory that can be used by multiple 

hardware devices need to be improved. Some of this is on 
the GPU/NIC/etc. drivers but anything the OS can do to help 
would be nice.

 Error handling and fault detection in operating systems today 
are fundamentally broken for distributed systems:
– The way signal handlers run today aren't really designed for 

multi-threaded systems and so they employ a stop-the-world 
approach that halts all threads within a process.

 All operations should come in non-blocking form (i.e. in the 
traditional "non-blocking" definition used by OSes - return 
E_AGAIN rather than blocking). 

 Dynamic resizing of the initial pinned memory segment would 
be nice.
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Thank you

Questions?


