
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 1

Legion: Runtime System

Pat McCormick
Michael Bauer, Sean Treichler, Elliott Slaughter,

Zhihao Jia, Alex Aiken, Sam Gutierrez, Galen Shipman

2015 ECI RTS Workshop
Rockville, MD – March 11-13, 2015

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 2

Legion Infrastructure

Legion High-Level Runtime

Mapping Interface

Mapping InterfaceMapping Interface

Machine ModelMachine Model

Low-Level Runtime (Realm)

GASNet MPI OpenMP CUDA Pthread ?

Legion High-Level Runtime

Mapping Interface

Mapping Interface

Machine Model

Low-Level Runtime (Realm)

GASNet MPI OpenMP CUDA Pthread ?

http://legion.stanford.edu

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 3

Data Model – Logical Regions

 Unbounded set of rows (index
space)

– unstructured, 1D, 2D, 3D, …

 Bounded set of columns (fields)

 Can be partitioned (along index
space)

 Tasks operate on regions:

– Must specify which fields and
privileges. Allows fields to be
“sliced”

 Tasks “launched” in program order
(execution order relaxed based on
dependencies) – out-of-order
processor

Field 1 Field 2 Field 3 Field 4

Index 0

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Index 7

Index 8

…

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 4

Logical Regions (continued)

 Multiple index partitions may be defined
– Index space can be partitioned “by kind” (not

just a regular partition)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 5

Legion Tasks (continued)

Example dynamic execution task
graph – task graph grows wider with

complexity of chemical species.

MPI

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 6

Mapping Interface
 Programmer selects:

– Where tasks run
– Where regions (data) are placed
– How regions are stored in memory

(AoS, SoA, etc.)
– View dependent upon machine model

 Mapping computed dynamically
 Decouple correctness from

performance

6

t1

t2

t3

t4
t5

rc

rw

rw1 rw2

rn

rn1 rn2

$

$

$

$

N
U
M
A

N
U
M
A

FB

D
R
A
M

x86

CUDA

x86

x86

x86

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 7

Realm: Deferred Execution

 All Realm operations are event-based & asynchronous:
– Return an event that triggers when operation is complete
– Events may be passed to other tasks and stored in data

structures

 All Realm operations are deferrable:
– Accept an event (or set of events) as a precondition
– Operation does not start until preconditions have triggered

Realm: An Event-Based Low-Level Runtime for Distributed Memory
Architectures, Sean Treichler, Michael Bauer, Alex Aiken, PACT 2014.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 8

Realm
 Event based, dynamic, explicit representation of inter-

task dependencies to bridge the latency gap
– Events are control dependences only (carry no data) – order

operations, don’t imply data dependencies
– Tens of thousands of unique events per second per node

run A copy
a  b run B

run C run D

e1 e2

e4

Event e1 = p1.spawn(A,…, NOEVENT);
Event e2 = a.copy_to(b, e1);
Event e3 = p2.spawn(B,…, e2);
Event e4 = p1.spawn(C,…, NOEVENT);
Event e5 = p1.spawn(D,…, e4);

 Machine model
– Processors (CPU, GPU)
– Memory (distributed,

system, GPU memory,
zero-copy memory)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 9

Events

 Created on demand, owned by the creating node
 Can wait, test on events – prefer use as preconditions
 Can also add custom user-triggered events
 Encodes owner’s ID (upper bits)
 Creation and triggering of an event can only happen once.
 Any number of operations may dependent on an event.

• When do we clean up? Programmer controlled?
• Reference counting overhead too high (esp. on distributed systems)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 10

Problem: Event Lifetimes

 Creating a large
number of events

 Need to reclaim storage

 Manual management

 Reference counting:

– Adds overhead
– Complicated when

event handles stored
in heap & distributed

~1600 events/node/s~130 events/node/s

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 11

Generational Events

 Observation: a fixed-sized
structure can describe:
– One untriggered event
– A large number (e.g. 232-1)

of triggered events

 Event creation can reuse an
existing generational event
– As long as it’s in the triggered

state
– Becomes the next generation

of that event

 Generation number included in
event handles and
subscription/trigger messages

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 12

Benefits of Generational Events
 ~20% of storage of

reference counting
approach

 Without the overhead

 No sensitivity to length
of run

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 13

Some Headaches...
 Mechanisms for pinning memory that can be used by multiple

hardware devices need to be improved. Some of this is on
the GPU/NIC/etc. drivers but anything the OS can do to help
would be nice.

 Error handling and fault detection in operating systems today
are fundamentally broken for distributed systems:
– The way signal handlers run today aren't really designed for

multi-threaded systems and so they employ a stop-the-world
approach that halts all threads within a process.

 All operations should come in non-blocking form (i.e. in the
traditional "non-blocking" definition used by OSes - return
E_AGAIN rather than blocking).

 Dynamic resizing of the initial pinned memory segment would
be nice.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 14

Thank you

Questions?

