Report Back of Session Il



Semantics, Abstractions, Attributes
and Meanings

e Reoccurring theme all week...
 Up and down the stack (app down, hardware up)



Memory models, name space, and address space

Very much an execution time decision.
— Could be both static and dynamic decisions/determination.

Namespace and “useful” abstractions to be controlled at application level

Composition between namespace and persistent data — same for
abstractions, priorities differ depending upon use -- mapping between
different application pieces (multi-physics, multi-scale, in situ vis +
analysis, libraries, etc.)

Who virtualizes resources (memory/storage) & at what level

— Cost models, etc. Challenges in terms of cost determination and
performance/platform portability.

Implied set of operations per application-level model
(transformations/layout for different stages differ)

— Explicit data layout awareness/selection
— Need an effective abstraction from data layout to iteration space

Workflow — intent needs to be communicated to runtime (semantic
awareness — e.g. understand the use of data)



Introspection interfaces, policies, and control

 “Understandability is the path to believability”

* |Information must be available at all levels — policy must be
consistent

Common set of abstractions important for
communications/understandability

Research in terms of where optimization can be applied (understand
feedback data)

Have to consider impact of multiple runtimes and
interoperability/coordination (composition — portability impacts)

Finding building blocks and understand costs/benefits of use (what
needs to be integrated vs. what doesn’t)

 Feedback throughout toolchain and runtime(s) and OS and
hardware.

Including facility data (power, temperature, etc.)

Low/no-impact way to gather data from hardware resources



Contribution to tools

e Understand why/when/where adaptive choices are made —
non-determinism makes debugging hard (need control at a
cost)

Integration with data analysis and visualization infrastructure
Composition issues for effective/use utilization of system
Infrastructure to support isolation and sharing

e Tools must meet set of requirements that allow better
interoperability with the application

Attribution is a difficult problem

What abstraction do you use present to the developer? Want a
choice...

How do you deal with/understand the complexity and size of the
resulting information

Steer performance analysis (in situ problem)



Parallelism forms, granularity, and synchronization
“Yes...”
Want full range of implicit to explicit parallelism support

Need to express dependencies — more freedom from lower
layers to expose additional parallelism

— This comes at a cost of additional overhead in terms of dependency

management (aggregation), memory, extra overheads --- hints from
application (higher) layers helpful



Contribution and responsibility to reliability

Runtime OS provides lower-level capabilities to enable resilience
mechanisms

— Where to store persistent/recovery data. Attributes about what is
suitable and what should be saved.

— Must be recoverable/guaranteed!

— Reliability attributes (costs for different approaches — e.g. price,
overheads, etc. how do we understand and reason about costs?)

DAGs give finer grained unit of recovery

— With more complicated state recovery (vs. bulk sync) — details
implementation dependent

Subjected to the same faults as the applications (how do we recover?)
Attribution & abstraction about events up the stack

Networking hardware state is unavailable/inaccessible (shouldn’t be)
Expression of what techniques should be used to mitigate error conditions

In some cases the correct thing to do is just fail — don’t over engineer
(balance function/capability vs. impact on code base)



Contribution and responsibility to energy/power
management

Optimizing under power and energy constraints — power is
the first constraint

Runtime needs to know power budget is and what it is using
— Per system, node, etc... How do we reason about the
critical path?
Attribution & layers for communication

— Two way street. Likely not controlled at the app level but could be
hinted at



