2015 ECI Runtime Systems Workshop
Parallel Session 1: Runtime Systems
Architecture (set 1)

Execution Model

= Execution model: Discuss the governing principles of the strategy of
computation that guides the runtime system (together with the
other system component layers) in addressing the challenges and
issues discussed here. Discuss the necessary features of a cogent,
comprehensive, and self-consistent execution model upon which to
base a runtime system design.

= Research topic: Define the responsibilities of different layers.
= What can one layer expect from other layers?

= Bypass methods through a layer where applicable

= Concept of services, you can choose to use them (or not)

= Some services cannot be “bypassed” without consequences

= Services that are responsible for a global view need to know what is
happening globally —hard problem

Asyachreny (Performance Variability)

= Asynchrony: Discuss the dramatic increase on variability of latency of
communication. Considering shared resources such as networking, memory
banks, discuss the increased uncertainty of action/task response time
requiring adaptive methods managed by the runtime. Discuss the semantics
and control strategy in the presence of the uncertainty imposed by
asynchrony. Identify the hardware support that facilitates task management.
Identify the differences between supporting synchronous and asynchronous
programming models.

= Today we view our world as regular, increasingly not true due to hardware
variability, contention, algorithm irregularity, etc

= Asynchronous runtime systems can be used to addressed variability of
communication (network, memory accesses), application irregularity

= Asynchrony may in turn increase performance variability
= Research issue: balance of coordination (implies communication) and
asynchrony
= May increase communication pressure and complicate resource management
= Performance data collected for a representative set of tasks/nodes — not just one
= Becomes a sampling problem
= Hardware to facilitate (Research question)
= We need to know more before we can selectively optimize via hardware

= Things like fast atomics, light weight task scheduling may be candidates, behavior of
software on the hardware equivalent of global performance counters

System Fragmentation

= System fragmentation: Discuss whether a runtime system
should operate across the total system span (or sub-span of
the app) or if it should operate on separate local domains
(nodes).

= Yes

= Runtime system has to operate across all nodes dependent
on what the service provides
= At least some of the services
= Some services are between applications on the machine
= Some are associated with the application

= Some services may only be concerned with what is happening on the
node

Relationship between OS and Runtime
system

= Relationship between OS and runtime system: Given that the
OS is persistent and is the surrogate for the hardware
resources and that the runtime reflects the workload
demands and properties of the application program, discuss
the relative roles and responsibilities of these two in
cooperation and what are the logical interfaces and protocols
by which current information is exchanged.

= Distinction between services “used” by an application and
services “used between” applications

= What is the visibility of the service?

= OS acting as hardware abstraction should be out of the critical
path to accessing hardware resources

Relationship between Programming
models and runtime systems

Relationship between Programming models and runtime systemes:
Establish the basic requirements of future runtime systems in terms
of their relationships with the programming interfaces and
compilation strategies. Explore the nature of programming models
that will employ runtime systems for management of dynamic
adaptive execution to guide co-design of programming and runtime
methods.

Research topic: what is presented or exposed regarding the
runtime to the programing model and or through to the compiler
and application.

= Balance of performance, portability, productivity and understandability

The interaction between this wide range of services in addition to
things like performance monitoring and data services

Compile time derived information,
guidance and constraints, e.g. JIT compiler

= Compile time information, guidance, and constraints: Discuss
new forms of compile time information that is fed to the
runtime to help it better perform its responsibilities
adaptively? This is a major new area of consideration,
perhaps among the biggest innovations of future system
design.

= (Clearly a lot of potential research in this area, we need to
have a mechanism to have more influence in this area — than
we currently have

= How to have a two way street through service layers to
influence workflow

= How to transfer semantic information up and down the services stack

Evaluation

= Evaluation: Discuss the metrics, measures, benchmarks, and means for testing
and evaluation of the runtime system architecture.

= Systems need to present the information we need
= How do we collect the information even if provided

= We don’t want performance metrics alone
= Want relative metrics to evaluate progress on research effort
= Time to solution
= Time to solution with failures
= Time to solution with system variability
= Time to solution under power/energy constraints

= Runtime overhead
= Time (CPU overhead)
= Space (memory)
= Benefit provided vs. overhead

= Portability of runtime

= Runtime implementation, algorithms/data structures portable across multiple
architectures

= Runtime provides program portability

