| 1

Adaptive Runtimes:
Charm++ case study and
Lessons for Exascale

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu
Parallel Programming Laboratory
Department of Computer Science
University of Illinois at Urbana Champaign

ILLINOIS PARALLEL

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB
DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

Exascale Challenges

« Main challenge: variability
— Static/dynamic
— Heterogeneity: processor types, process variation, ..
— Power/Temperature/Energy
— Component failure

« Exacerbated by strong scaling needs from apps
— Why?

e To deal with these, we must seek
— Not full automation
— Not full burden on app-developers

— But: a good division of labor between the system and
app developers

}III
-

(s

.-
i)
T

}W (N

(s

T L1

A couple of forks

e MPI + X
e “Task Models”

— Asynchrony

« Overdecomposition:

— Most adaptivity

Overdecomposition

MPI1+X

Task
Models

» PPL

ul1oc

My Mantra

Ve(ORgYMpPosItio

synchrony
igratability

.
LR
15
..

=

Overdecomposition

Decompose the work units & data units into
many more pieces than execution units

— Cores/Nodes/ ..
Not so hard: we do decomposition anyway

" N—

—
—

i

mm
. |

|
i

L[5

..
[] R]

Migratability

Allow these work and data units to be
migratable at runtime

— i.e. the programmer or runtime, can move them

Consequences for the app-developer

— Communication must now be addressed to
logical units with global names, not to physical
Processors

— But this is a good thing
Consequences for RTS

— Must keep track of where each unit is
— Naming and location management

\! ;lll

(=

..
[]l 4]

Asynchrony:
Message-Driven Execution

e Now:

— You have multiple units on each processor
— They address each other via logical names

 Need for scheduling:

— What sequence should the work units execute in?

— One answer: let the programmer sequence them
e Seen in current codes, e.g. some AMR frameworks

— Message-driven execution:

* Let the work-unit that happens to have data (“message”)
available for it execute next

e Let the RTS select among ready work units

 Programmer should not specify what executes next, but can
influence it via priorities

i

(L]
N
=~
=~
=

Message-driven Execution

(]
.I\

[

O g
9
N

Processor |

Message Queue

—

A[..].foo(...)

Processor 2

Message Queue

—

}III
-

(s

.-
i)
T

Overview of features

Objects, called chares:

— Organized into multiple collections, each with its
owh indexing

— Asynchronous method invocations
User-level “run” threads embedded in chares
Asynchronous (non-blocking) reductions

“structured dagger’:

— script-like notation to express dependencies
among computations and messages within chares

Empowering the RTS

{ Adaptive }

Runtime System

Asynchrony Migratability

« The Adaptive RTS can:
— Dynamically balance loads

— Optimize communication:
« Spread over time, async collectives
— Automatic latency tolerance
— Prefetch data with almost perfect predictability

0 PPL

UIuc

Dl
Bl A

- -
s
T

L1
[] BN

i
[] R]

}l (N

A

(=

..
[]l 4]

NAMD: Biomolecular Simulations

e Collaboration with K.
Schulten

e With over 70,000
registered users

* Scaled to most top US
supercomputers

* In production use on
supercomputers and
clusters and desktops

e Gordon Bell award in
2002

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten

i PPL

ul1oc

Time Profile of ApoAl on Power7 PERCS

92,000 atom system, on 500+ nodes (16k cores)

Time Profile
2ms total

80

A snapshot of optimization in progress.. Not the final result

65]

60 7

Percentage Utilization

o

19.4822s 19.4824s 19.4826s 19.4828s 19.483s 19.4832s 19.4834s 19.48368 19.4838s 19.484¢
Time (0.002ms resolution)

Overlapped steps, as a result of asynchrony

}W (N

(s

)

ul1oc

.
me
T L1

Timeline of ApoA1 on Power7 PERCS

: 230us :
ée Tirne In Microseconds) E

u
19,482,630 . 19,482,670 13, 492 710 13, 482,750 15, 432 790 13, 482 830 19,482,870 . 139,482,310 19,482,950
| ! ! | !

| ——
L e R Y
4] o ﬁ—mﬂmmm—
mnmuﬂmmnmm HEE TSRS H
O\ A e —
H #H 'HI iH IHHII i

LR —— P] i}‘

i
hi
———r

i — -)
T i i

i 'IEW ‘o

AV

- -
s
T

5 PPL

UIuc

1**{!
- (.

;ﬂ (N

il aw
A

[]l 4]

=

NAMD: Strong Scaling

 HIV Capsid was a 64
million atom
simulation, including
explicit water atoms

« Most biophysics
systems of interests
are 10M atoms or
less... maybe 100M

e Strong scaling
desired, to execute
billions of steps

Exascale lesson: strong scaling will be required
i PPL

ul1oc

1=
ot

A

L[5

[] R]

Structured AMR miniApp

15 PPL

ul1oc

Structured AMR: State Machine

Required depth
Initial state
Decision

Received message
Local error condition

Termination detection

©
(2

Coarsen

Coarsen,
Stay

1o PPL

ul1oc

npm
/

.
T L1

=

m

]
. (I

Structured AMR: Performance

Advection Benchmark
First order method in
3d-space

Testbed: IBM BG/Q Mira
Cray XK/6 Titan

1

— Nd Load Ealanéing |
== Distributed Load Balaneing
128 -- Ideal r

Steps per second
w o
NS

f—
2

o)

7H48 4096 8192 16384 32768 65536 131072

Number of Cores 17 PPL
UIucC

-+

([T

Production-Quality System with Many Apps

 Used on current PF class machines on many
applications:
— NAMD
— Charisma
— OpenAtom
— Episimdemics

 Correspondingly, production-quality system
— Nightly builds with testing on dozens of platforms

— Covers a variety of OS, hardware, compiler
combinations

s PPL

ul1oc

[] R]

MinitApps:http://charmplusplus.org/benchmarks

LeanMD

Barnes-Hut
(n-body)

LULESH 2.02
PDES

1D FFT

Dense LU
GTC

/

..
npm
-]

. (I
L 1 B]

(s

Custom array index,
Message priorities,
Load Balancing,
Checkpoint restart

Load Balancing,
Checkpoint restart,
Power awareness

Message priorities,
Load Balancing

AMPI, Load Balancing

Message priorities,
TRAM

Interoperable with
MPI

SDAG
SDAG

BG/Q

BG/P
BG/Q

Blue Waters

Hopper

Stampede
BG/P

BG/Q
XT5

BG/Q

131,072

131,072
32,768

16,384

8,000
4,096

65,536
16,384

8,192

1,024 »pL

ul1oc

me

Where are Exascale Issues?

 These techniques were needed for dynamic
irregular apps even on yesterday’s machines

— At exascale, they need to be applied to even
regular apps

— Charm++ meets exascale challenges already,
almost
« How we got so lucky: because of these irregular apps

The adaptivity that was created via overdecomposition,
migratability, & asynchrony, for dynamic applications, is
also useful for handling machine variability at exascale

1%'{’
(.

. PPL

ul1oc

Agenda for Exascale RTS
from Charm++ point of view

PPL

ul1oc

|
NS

L[5

[JL QL
[] R]

Costs of Overdecomposition?

We examined the “Pro”s so far
Cons and remedies:

Scheduling overhead?
— Not much at all
— In fact get benefits due to blocking

Memory in ghost layer increases

— Fuse local regions with compiler support

— Fetch one ghost layer at a time

— Hybridize (pthreads/openMP inside objects/DEBs)

Less control over scheduling?
— i.e. too much asynchrony?

— But can be controlled in various ways by an observant
RTS/programmer

For domain-decomposition based solvers, may increase

number of iterations

— You can lift it to node-level overdecomposition (use openMP
inside)

— Also, other ideas:

» PPL

Exascale RTS components

XARTS

WUDUs: Indexed collection,
Migratable threads,
Scalable sections (sub-communicators),
Location services

v

Data-driven scheduler, user-

level threads, priority queues

domawed uopdadsouiu| snonupuog]

—b[Fault tolerance protocols]

\

Load balancers:
intra-node, inter-node
Power-aware, Thermal-

aware, lopo-aware

~
N

N

Communication Libs
(Colletives/persistence)

LRTS: m/c specific implementations:
(start-up, communication, virtual mem. management)

mpm
‘glfs'{,

L 1 B]

/

N (=
&

]
L]
minl

Scalable Tools
Analysis, Debugging

23

w
~~
=

ul1oc

..
[]l 4]

gLl
N

=

T

Fault Tolerance in Charm++/AMPI

Four approaches available:
— Disk-based checkpoint/restart

— In-local-storage double checkpoint w auto restart
 Demoed on 64k cores

— Proactive object migration

— Message-logging: scalable fault tolerance
e Can tolerate frequent faults

« Parallel restart and potential for handling faults during
recovery

Common Features:

— Easy checkpoint: migrate-to-disk

— Based on dynamic runtime capabilities

— Use of object-migration

— Can be used in concert with load-balancing schemes

2+ PPL

ul1oc

Extensions to fault recovery

« Based on the same over-decomposition ideas
— Use NVRAM instead of DRAM for checkpoints

« Non-blocking variants
e [Cluster 2012] Xiang Ni et al.

— Replica-based soft-and-hard-error handling

* As a “gold-standard” to optimize against
e [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

« A vision for future:
— But depends on whether faults are frequent

i

LT
w4
T

[]l 4]

» PPL

ul1oc

Power/Energy/ Temperature/ Time

Usually: power and temperature are
constraints

Whole machine problem

But needs application RTS to cooperate with
global OS

)

ul1oc

ot

\! }III

L[5

..
[] R]

Saving Cooling Energy

Easy: increase A/C setting

— But: some cores may get too hot

So, reduce frequency if temperature is high (DVFS)
— Independently for each chip

But, this creates a load imbalance!

No problem, we can handle that:

— Migrate objects away from the slowed-down processors
— Balance load using an existing strategy

— Strategies take speed of processors into account
Implemented in experimental version

— SC 2011 paper, IEEE TC paper

Several new power/energy-related strategies

— http://charm.cs.illinois.edu/research/energy

2 PPL

ul1oc

App-facing and whole-machine RTS

e These are two distinct entities.. Have to be.
— Jobs come and go

e Today, you can think of SLURM etc. as
“‘whole machine RTS”

— But that’s very limited

« We need a two-way dialogue between them,
— And not just at job-start time

Ll
_1*%'{’

i)
T

» PPL

ul1oc

I

PARM:Power Aware Resource Manager

« Charm++ RTS facilitates malleable jobs

« PARM can improve throughput under a fixed
power budget using:

— overprovisioning (adding more nodes than
conventional data center)

— RAPL (capping power consumption of nodes)
— Job malleability and moldability

Power Aware Resource Manager
(PARM)

Profiler

Strong Scaling |
Power Aware Model >

Job Characteristics

}H (N

(s

i)
T

PPL

ul1oc

}! (N

i
[] R]

A

..
[]l 4]

Controlling Asynchrony

« Tighter control over scheduling is needed

e NAMD example:

— Messages for the next iteration start arriving
even before | have received all messages for the
current iteration

— The problem: Its not the scheduling (which is
easier to solve) but interference..

Tene InMicrosscceds
184270 1946270 19482750 1398263 184557 8420 &

woob o e—— .
A e s e .

g _ﬂlh_h'hﬂmp

I'NHH -—m Hi B Pt ek i

g ._m .. I M
i'il\'li'i'i _-I ;

L mm—-s
n| v-nu—mu.#
L}
q- L
; mmm#— i

] i o Y

T

w0 PPL

ul1oc

Sub-computations support

« E.qg. ability to fire subscale simulations

— Overdecomposition creates a potential for
handling this,

— But new scheduling/load balancing techniques
are needed

}III
-

(s

.-
i)
T

)

ul1oc

-+

([T
T

Interoperability

Don’t take over “main’”.. At least offer a
mode

But there are more challenges to solve when
interoperating between a task-model and an
MPI-like model

We need to evolve a consensus on:

— Control transfer mechanisms
— Data sharing and data transfer mechanisms

)

ul1oc

A
N

(s

T L1

Collectives on sections

« A subset of objects spread over a subset of
nodes, under dynamic redistribution..
— Efficient collective algorithms in this setting

— Adapting to whatever fraction of nodes is
occupied by the section

— May seem straightforward, but has some twists

» PPL

ul1oc

Reconfiguring Apps and RTS

« We need a set of knobs in the application

— Can be created by the compiler, the
programming language, or the user

— Each knob (“control point”) specifies its “effects”
in a formal registration

« We need a closed loop control system:

— Periodically, collect introspected data,
— Analyze it and decide the issue that needs fixing
— Select one or more knobs that can fix it, and turn

 PICSin Charm++ is one attempt

}III
-

(s

i)
T

)

ul1oc

