
Adaptive Runtimes: 
Charm++ case study and 

Lessons for Exascale

Laxmikant (Sanjay) Kale
http://charm.cs.illinois.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign



Exascale Challenges
• Main challenge: variability

– Static/dynamic
– Heterogeneity: processor types, process variation, ..
– Power/Temperature/Energy
– Component failure

• Exacerbated by strong scaling needs from apps
– Why?

• To deal with these, we must seek
– Not full automation 
– Not full burden on app-developers
– But: a good division of labor between the system and 

app developers

2



A couple of forks

• MPI + x 
• “Task Models”

– Asynchrony
• Overdecomposition: 

– Most adaptivity

3

MPI+X

Overdecomposition

Task
Models



O

My Mantra

Maverdecompositio
nsynchrony
igratability

4



Overdecomposition
• Decompose the work units & data units into 

many more pieces than execution units
– Cores/Nodes/..

• Not so hard: we do decomposition anyway

5



Migratability
• Allow these work and data units to be 

migratable at runtime
– i.e. the programmer or runtime, can move them

• Consequences for the app-developer
– Communication must now be addressed to 

logical units with global names, not to physical 
processors

– But this is a good thing
• Consequences for RTS

– Must keep track of where each unit is
– Naming and location management

6



Asynchrony: 
Message-Driven Execution

• Now:
– You have multiple units on each processor
– They address each other via logical names

• Need for scheduling:
– What sequence should the work units execute in?
– One answer: let the programmer sequence them

• Seen in current codes, e.g. some AMR frameworks
– Message-driven execution: 

• Let the work-unit that happens to have data (“message”) 
available for it execute next

• Let the RTS select among ready work units
• Programmer should not specify what executes next, but can 

influence it via priorities

7



Message-driven Execution

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…)

8



Overview of features
• Objects, called chares:

– Organized into multiple collections, each with its 
own indexing

– Asynchronous method invocations
• User-level “run” threads embedded in chares
• Asynchronous (non-blocking) reductions
• “structured dagger”: 

– script-like notation to express dependencies 
among computations and messages within chares

9



Empowering the RTS

• The Adaptive RTS can:
– Dynamically balance loads
– Optimize communication:

• Spread over time, async collectives
– Automatic latency tolerance
– Prefetch data with almost perfect predictability

Asynchrony Overdecomposition Migratability

Adaptive
Runtime System

Introspection Adaptivity

10



NAMD: Biomolecular Simulations

• Collaboration with K. 
Schulten

• With over 70,000 
registered users

• Scaled to most top US 
supercomputers

• In production use on 
supercomputers and 
clusters and desktops

• Gordon Bell award in 
2002

Recent success: 
Determination of the 
structure of HIV capsid 
by researchers including 
Prof Schulten

11



Time Profile of ApoA1 on Power7 PERCS

2ms total

92,000 atom system, on 500+ nodes (16k cores)

12

A snapshot of optimization in progress.. Not the final result

Overlapped steps, as a result of asynchrony



Timeline of ApoA1 on Power7 PERCS
230us

13



NAMD: Strong Scaling

• HIV Capsid was a 64 
million atom 
simulation, including 
explicit water atoms

• Most biophysics 
systems of interests 
are 10M atoms or 
less… maybe 100M

• Strong scaling 
desired, to execute 
billions of steps

14

Exascale lesson: strong scaling will be required



Structured AMR

15

Structured AMR miniApp



Structured AMR: State Machine

16



Number of Cores

Testbed: IBM BG/Q Mira
Cray XK/6 Titan

Advection Benchmark
First order method in 

3d-space

Structured AMR: Performance

17



Production-Quality System with Many Apps

• Used on current PF class machines on many 
applications:
– NAMD
– Charisma
– OpenAtom
– Episimdemics
– …

• Correspondingly, production-quality system
– Nightly builds with testing on dozens of platforms
– Covers a variety of OS, hardware, compiler 

combinations

18



Mini-App Features Machine Max cores
AMR Custom array index,

Message priorities, 
Load Balancing, 

Checkpoint restart

BG/Q 131,072

LeanMD Load Balancing, 
Checkpoint restart, 
Power awareness

BG/P 
BG/Q

131,072
32,768

Barnes-Hut
(n-body)

Message priorities, 
Load Balancing

Blue Waters 16,384

LULESH 2.02 AMPI, Load Balancing Hopper 8,000

PDES Message priorities, 
TRAM

Stampede 4,096

1D FFT Interoperable with 
MPI

BG/P
BG/Q

65,536
16,384

Dense LU SDAG XT5 8,192

GTC SDAG BG/Q 1,024

MiniApps:http://charmplusplus.org/benchmarks



Where are Exascale Issues?
• These techniques were needed for dynamic 

irregular apps even on yesterday’s machines
– At exascale, they need to be applied to even 

regular apps 
– Charm++ meets exascale challenges already, 

almost
• How we got so lucky: because of these irregular apps

The adaptivity that was created via overdecomposition, 
migratability, & asynchrony, for dynamic applications, is 
also useful for handling machine variability at exascale

20



Agenda for Exascale RTS
from Charm++ point of view

21



Costs of Overdecomposition?
• We examined the “Pro”s so far
• Cons and remedies:
• Scheduling overhead? 

– Not much at all
– In fact get benefits due to blocking 

• Memory in ghost layer increases
– Fuse local regions with compiler support
– Fetch one ghost layer at a time 
– Hybridize (pthreads/openMP inside objects/DEBs)

• Less control over scheduling?
– i.e. too much asynchrony?
– But can be controlled in various ways by an observant 

RTS/programmer
• For domain-decomposition based solvers, may increase 

number of iterations
– You can lift it to node-level overdecomposition (use openMP

inside)
– Also, other ideas: 22



Exascale RTS components

23



Fault Tolerance in Charm++/AMPI
• Four approaches available:

– Disk-based checkpoint/restart
– In-local-storage double checkpoint w auto restart 

• Demoed on 64k cores 
– Proactive object migration
– Message-logging: scalable fault tolerance

• Can tolerate frequent faults
• Parallel restart and potential for handling faults during 

recovery
• Common Features:

– Easy checkpoint: migrate-to-disk
– Based on dynamic runtime capabilities
– Use of object-migration
– Can be used in concert with load-balancing schemes

24



Extensions to fault recovery
• Based on the same over-decomposition ideas

– Use NVRAM instead of DRAM for checkpoints
• Non-blocking variants
• [Cluster 2012] Xiang Ni et al.

– Replica-based soft-and-hard-error handling
• As a “gold-standard” to optimize against
• [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

• A vision for future: 
– But depends on whether faults are frequent

25



Power/Energy/Temperature/Time
• Usually: power and temperature are 

constraints
• Whole machine problem
• But needs application RTS to cooperate with 

global OS

26



Saving Cooling Energy
• Easy: increase A/C setting

– But: some cores may get too hot
• So, reduce frequency if temperature is high (DVFS)

– Independently for each chip
• But, this creates a load imbalance!
• No problem, we can handle that:

– Migrate objects away from the slowed-down processors
– Balance load using an existing strategy
– Strategies take speed of processors into account

• Implemented in experimental version
– SC 2011 paper, IEEE TC paper

• Several new power/energy-related strategies
– http://charm.cs.illinois.edu/research/energy

27



App-facing and whole-machine RTS

• These are two distinct entities.. Have to be. 
– Jobs come and go

• Today, you can think of SLURM etc. as 
“whole machine RTS”
– But that’s very limited

• We need a two-way dialogue between them, 
– And not just at job-start time

28



PARM:Power Aware Resource Manager

• Charm++ RTS facilitates malleable jobs
• PARM can improve throughput under a fixed 

power budget using:
– overprovisioning (adding more nodes than 

conventional data center)
– RAPL (capping power consumption of nodes)
– Job malleability and moldability



Controlling Asynchrony
• Tighter control over scheduling is needed
• NAMD example: 

– Messages for the next iteration start arriving 
even before I have received all messages for the 
current iteration

– The problem: Its not the scheduling (which is 
easier to solve) but interference..

30



Sub-computations support
• E.g. ability to fire subscale simulations

– Overdecomposition creates a potential for 
handling this, 

– But new scheduling/load balancing techniques 
are needed

31



Interoperability
• Don’t take over “main”.. At least offer a 

mode
• But there are more challenges to solve when 

interoperating between a task-model and an 
MPI-like model

• We need to evolve a consensus on:
– Control transfer mechanisms
– Data sharing and data transfer mechanisms

32



Collectives on sections
• A subset of objects spread over a subset of 

nodes, under dynamic redistribution..
– Efficient collective algorithms in this setting
– Adapting to whatever fraction of nodes is 

occupied by the section
– May seem straightforward, but has some twists

33



Reconfiguring Apps and RTS
• We need a set of knobs in the application

– Can be created by the compiler, the 
programming language, or the user

– Each knob (“control point”) specifies its “effects” 
in a formal registration

• We need a closed loop control system:
– Periodically, collect introspected data,
– Analyze it and decide the issue that needs fixing
– Select one or more knobs that can fix it, and turn

• PICS in Charm++ is one attempt

34


