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ASC codes face two unprecedented performance
challenges that tools can help to address.

= Performance portability
« What abstractions will allow code to run well across architectures?
« How do we choose the right:
— Scheduling policy?
— Granularity of parallelism?

— Data access order?

= Performance variability
» Code performance can vary wildly between runs.
« (Can be attributed to:
— Resource contention (memory, network congestion)
— Dynamic, nondeterministic scheduling
— Data-dependent/adaptive applications (depends on input deck)
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Current abstractions provide tunability, not portability.

Runtime for simple X=cY loop in Kripke,

Runtimes for loops in ARES, varying varying level of abstraction

RAJA execution policy
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Loop Increasing abstraction (labmdas, templates)

= User can easily tune runtime parameters in RAJA and Kokkos, but
doesn’t know what execution model is best for what hardware

= Abstraction has a cost - compilers don’t always optimize.
= Finding causes of problems like this can be very difficult.
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Many factors contribute to performance variability
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Communication in pF3D: Cray (red) vs. BG/P, BG/Q

= Network congestion, = Data dependent performance
topology (varies by input deck)
" OSnoise . gﬂe?’ggrlhqgl?gg?)éégﬁgg modeling
= Dynamic task scheduling, data, as well.
migration = And, moreso at exascale:
= Memory topology - Power bounds?

. e Resilience issues?
= Load imbalance
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Measurement tools must collect sufficient data to
characterize performance variability.

= Single-trial characterizations don’t reflect real-world

performance.
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= This requires support from the OS/Runtime
 We need to be able to add thread, task, event, scheduler context

« Interfaces like OMPT, HPX’s performance measurement infrastructure
are good examples of detailed measurements.

« OCR task view looks like it provides useful data (task graph position)
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MemAXxes: Visualizing High Dimensional Memory Data
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= Shows memory data mapped to code, machine, and application
= Parallel coordinates view (bottom) shows relationships
between metrics for which there is no view.
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Case Study: Optimization of On-node Locality Problems

= Parallel coordinates view shows
correlation between array index
and coreid in LULESH

= Linked node topology view
shows data motion for
highlighted memory operations

. = A contiguous chunk of an array is
s @ initially split between threads on
four cores

cpu zidx node index
1

= Using an optimized affinity
scheme, we improve locality

Optimized thread affinity with good locality * Performance improved by 10%
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Ravel: Making Message Traces Readable

= Noise and delays make traces unreadable

= Hard to understand logical structure of a message or task schedule.

«  We need new techniques to unravel this hairball -> logical time
Il 11 1 11 Il 11 I “’ﬁ I 11 1l I 1l 11 |
S\ | J Al I || A1 Il W | ji / J1 1A I LA S AR Y 1l L
AN L\l i WY Y L\ LML / Vi |} ra] JERY | AN 1l i Y || L
[ %IP? !L |\ A Y \\ | I | AR A 1\ \ /\ | A Y |7 W | VAR A A\ LA [ 0, VY | G I () V] O [/
L] W/ [\ L JA DAY \\ \ JARY | NN | Y VO | Y 7 N )| TANRY/ |\ VY I/ |\ N A W | I [
WALV (W Ylﬂ\\\#\\ LY \ W _JIJ A VAN T Y AL\ J I
[/ A J/A\
[N
VAN AR | 1\
\ \ | N/ Al
AF Al \ AL/ VAL ALY
WA AN 1 N NN AW Y
N | \L 1} AR A
\ ||
) \ \ \
\ \
3 WA ]
|
WA \ \ \
A1 \ ] AVERN A LA A\
| \ YRV | \ / \
1 AWAY ) || HARN \ \ AR AN
%ﬁ \ \ VRN IIRY \ | ) \1
LWl AT AL I WA\ \Jh
| Ih 11} 1\ | 1\ I T | \ 1T
AINVAYEI o | \ AVAIAY \ LA\ [\ 1Ll
LY \ \ L \ | \ ! \
i | [1 WINE [T NN W VIR T [ITAWAYE \ A | AA [\ L\ [\
l I \d\l! MM T I \ANMIT T NT h Y Y \ \ AN
RV i \ \T(LI 1WA Yo \ \ 1\ 1 \
l] H\{ Il 1l \ ﬂll 1L\ | I IA LI AW | I ﬂ([I il ]
11 I I II 11 II I 1 1

t Lawrence Livermore National Laboratory

¢

COMPUTATION



Extracting Virtual Time from MPI Traces

= Step 1: Identifying time slices

= Step 2: Mapping timing metrics

' - IV |
Start with Lamport happened-before - ;
Concept of connected components %l/ - 1
e 2

Start with send/recv pairs and grow from there/
Heuristics on when to stop growing

Mapping to virtual time loses physical time

Reintroduction of time using lateness metric
— Time difference to end of aligned phase
— Shows propagations of delays
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Making sense of nondeterministic task schedules

Jacobi2D (Charm++) with and without reordering for nondeterminism
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= Left shows mess of tasks considering message receive order

= Right shows messages reordered to ignore nondeterminism,
colored by lateness.
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Need to “unravel’” nondeterministic behavior
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With enough data from tools, we can build models for
policy decisions

= Using random forests, other regression models, car
predict fastest RAJA policy for LULESH with:

» 75% accuracy given data size and type of loop.

« 95% accuracy if we include code-specific data (specific loo
callsite)

= ARES is more complicated (real physics)
« Very low accuracy with just loop type, data size
e 95% accuracy when instruction mix is included in the model.

« More complex measurements are required for real codes
vs. proxy applications.

= Performance analysis is big data analysis, but with
limited measurements and huge feature space.
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Predictive models can give insight into causes of
performance problems.

= pF3D and MILC performance varies
dramatically w/node mapping on BG/Q.

« Ran 100s of trials w/many mappings.

e Built models with different feature
combinations
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= Very different predictive features for
the two apps:

m\:ﬁ@mﬁ
NN « pF3D: bytes (B/W)
\ ¢ MILC: network stalls (latency)
0.768 0,7690.769 0.769 0C0.7e9o.7e9 0.77 = 0.77 0.2 ] Need System_wide measurement to
understand performance on shared
[z Dilation Stalls/Packet networks, other shared resources.

I Bytes RKXXX Injection FIFO

Stalls » LCstarting to use Sandia LDMS for ths.
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So, what are ASC’s tool needs?

0. Enough data for real-world empirical performance modeling.

* Needed for performance portability and for understanding
performance variability.

How to do this:

1. Runtime systems must provide measurement mechanisms.
« Context for threads, tasks, data flow, and synchronization.

2. Continuous, system-wide monitoring.
« (Cannot measure any code in isolation: cause may be external.

3. Tools that can correlate and associate semantics and other
metadata with each measurement.

« (an be through analysis or direct measurement; often need HW
support.
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