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OCR level of abstraction
void ParallelAverage( float* output, const float* input, size_t n ) {

Average avg;

avg.input = input;

avg.output = output;

parallel_for( blocked_range<int>( 1, n ), avg );

}

if(!range.empty()) {                                                                                                                            

start_for& a = *new(task::allocate_root()) start_for(range,body,partitioner);                                                                                                              

task::spawn_root_and_wait(a);

}

void generic_scheduler::local_spawn_root_and_wait( task& first, task*& next ) {                                                                                               

internal::reference_count n = 0;                                                                                                                       

for( task* t=&first; ; t=t->prefix().next ) {                                                                               

++n;                                                                                                                          

t->prefix().parent = &dummy;                                                                                                   

if( &t->prefix().next==&next ) break;                                                                                   

}                                                                                                                           

dummy.prefix().ref_count = n+1;                                                                                                                       

if( n>1 )                                                                                                                   

local_spawn( *first.prefix().next, next );                                                                                                             

local_wait_for_all( dummy, &first );                                                                                                           

} 

hides…

hides…

hides…

OCR’s level of 
abstraction is at the 
very bottom

TBB user-friendly API
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Event Driven Task (EDT)
• Distinct from the notion of a thread/core
• Executes when all required data-blocks have 

been provided to it

• Creates other EDTs and provides data-blocks 
to them
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Globally visible namespace of data-blocks

– Explicitly created and destroyed

– Only available “global” memory

– Data-blocks can move

EDT1

EDT2
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EDT: alloc (here), 
free (not here)

Real resource 
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DB: alloc (here), 
free (not here)
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OCR Distributed Runtime (OCR-D)
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OCR: Just the Facts . . .

• Instance of a task-based dynamic runtime
• Research prototype
• Dynamic datablocks, not mallocs
• Explicit communications
• Explicit description of relationships between things

• Now openly public development, RO to all, BSD license
• Single-node or clusters of x86
• Ramping for May release (with RW access)
• https://xstack.exascale-tech.com/git/public
• Spec 1.0, tutorials, examples, tools, etc.

• Extensions: Collectives, Region Parallel, Posturing, etc.
• Potential future spec inclusion: “breeding ground”

• Public wiki + such are in-flight

• Functionally complete: performance work is coming
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Runtime vs. OS: grudge match
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Application

Tupperware?
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Fragmentation & Composability
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Non-exclusive execution models

• Task-based runtimes do not preclude other models

• You can run MPI or OMP on top . . .

• . . . just don’t expect full benefits that way

• Fragmentation is a guidance directive

• Composability is a requirement

• Where is the line between App and Runtime?
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Runtime vs Programming Model

HLL / DSL
Hero Scientist

Runtime

Tools

Loss of Semantic Information

Machine

Need for semantic information
(tuning, hints, guides) – (collectives, affinity, stream, ..)
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SAR: Async does matter . . .

(c) 2015, Intel 11



SAR: . . . but won’t fix algorithms
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App Flow Graph - Fibonacci 
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Advanced Visualizations

• Video clip here
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Evaluation of Runtimes

• R&D Prototype vs Production
• What does performance mean?

• User code?
• Runtime overhead?
• Throughput?
• Scaling? (strong? weak?)

• Capability to <item> utilize <metric> ?
• Parallelism, power, bandwidth, latency, throughput

• Testing?
• Validation of results (performance loss for determinism)
• Validation of runtime
• Benchmarketing naturally goes here

• Opportunities in related fields: re-inventing the wheel?
• Factory automation, natural sciences (eg: marine life)
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Cholesky on OCR under FSim
Strong scaling, 100x100, 8-256 XEs, 1-32 CEs, unoptimized, greedy hierarchical work-steal 
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Cholesky - Network traffic

• Current memory allocator problem manifests
• Smart, hierarchical allocator system in review

• Greedy scheduling algorithm without heuristics = over-communicates
• No task prioritization by scheduler = imbalance in movement
• Revised scheduler framework and smart prioritization in review
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Memory Allocator Scalability Challenge
Rice Study: single node micro-benchmark, 8-core / dual socket E5-2690

• Study comparison of different allocator approaches on x86 nodes
• Guiding research direction for those uses that stress dynamic allocation

• Additional experiments in progress, allocator re-design
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Reservoir – OCR on 32-th SNB

• OCR matches or betters OpenMP in certain benchmarks
• Not a complete OCR implementation – no datablocks
• Uses a simple work-stealing scheduler
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• OCR scales as per underpinnings for distributed x86
• Rice has GASnet implementation in progress for distributed x86 cluster runs

• Memory allocator and EDT scheduler represent scaling limits

• Managing hierarchy and complexity efficiently

• Moving from functionally complete to maturing technologies and limits

• All Open Source – available to all for use or modification
• Full release of FSim, OCR, and all associated pieces by August 

• Re-use {modules, ISA, energy model, ..} in other tools/environments

• Port more SW ecosystem components on top of OCR and/or FSim natively

• TG sim scales to 1,152 cores using 64 dual-socket nodes
• 128 simulated blocks, ~10-30 MIPS/core depending on comms rate

• Runs on raw TCP/IP sockets or ibverbs (latency sensitive)

• Tinkering with GASnet port and/or MPI port

• Architecture model has clear interfaces in network model 

Status and Opportunities
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Q & A
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Linux
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Applications & Co-design Strategy

DOE Proxy Apps
ExMatEx

ExaCT
CESAR
TORCH

Mantevo
NERSC SSP

LULESH
SNAP
CoMD

. . .
<TBD>

Prioritization
DOE & Intel joint 

discussion

Legacy Port
Ensure legacy tools in 
place and functioning 

without OCR on TG Arch

Legacy API
Ensure legacy 

components/APIs work 
on top of OCR

Refactoring
Redesign EDT-native version 
with monthly on-site visits to 

DOE experts

Analysis
With DOE experts understand 

impacts of EDT model on 
application viability

Enhancement
Extend OCR APIs and tools 
for more efficient results, 

scalability

Feedback/Key learnings

Step 1

Step 2

Apps Engineer

Legacy
Work

OCR
R&D Team
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