
You’re Holding It Wrong
OPEN COMMUNITY RUNTIME

(Really, just runtimes . . .)

Josh Fryman, Intel

DOE Workshop on Exascale Runtimes

March 2015

(c) 2015, Intel 1

OCR level of abstraction
void ParallelAverage(float* output, const float* input, size_t n) {

Average avg;

avg.input = input;

avg.output = output;

parallel_for(blocked_range<int>(1, n), avg);

}

if(!range.empty()) {

start_for& a = *new(task::allocate_root()) start_for(range,body,partitioner);

task::spawn_root_and_wait(a);

}

void generic_scheduler::local_spawn_root_and_wait(task& first, task*& next) {

internal::reference_count n = 0;

for(task* t=&first; ; t=t->prefix().next) {

++n;

t->prefix().parent = &dummy;

if(&t->prefix().next==&next) break;

}

dummy.prefix().ref_count = n+1;

if(n>1)

local_spawn(*first.prefix().next, next);

local_wait_for_all(dummy, &first);

}

hides…

hides…

hides…

OCR’s level of
abstraction is at the
very bottom

TBB user-friendly API

(c) 2015, Intel 2

Event Driven Task (EDT)
• Distinct from the notion of a thread/core
• Executes when all required data-blocks have

been provided to it

• Creates other EDTs and provides data-blocks
to them

DataData

Data

Data

Data

Data

Data

Globally visible namespace of data-blocks

– Explicitly created and destroyed

– Only available “global” memory

– Data-blocks can move

EDT1

EDT2

Dependence

– EDT1 provides data to EDT2

– EDT1 creates EDT2

– Visible to the runtime

Accessible
data-blocks

Data-blocks
for other EDTs

Create
other EDTs

EDT

(c) 2015, Intel 3

High-level OCR Concepts

EDT: alloc (here),
free (not here)

Real resource
alloc/free map

DB: alloc (here),
free (not here)

Scheduler
Module

Placer
Module

Resiliency
Manager

Communications
Layer

Introspection
Layer

COTS HW
(x86, ..)

Prototypes
P0, P1, ..

OCR High-level Model
App

OCR API

(c) 2015, Intel 4

OCR Distributed Runtime (OCR-D)

x86
COTS

x86
COTS

x86
COTS

Linux Linux Linux

Existing Platforms

x86 x86 x86

rmd-
krnl

rmd-
krnl

rmd-
krnl

TG (FF2/XS/DF1)
Platforms

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

hetero-
layer

hetero-
layer

hetero-
layer

H
er

o

M
P

I-
lit

e

O
M

P
-l

it
e

TB
B

P
O

SI
X

-l
it

e

lib
C

C
+

+
ST

L

C
+

+
R

T

C
N

C
 R

T

Productivity Programmers
O

C
R

 A
P

Is

SW Ecosystem Vision for OCR Systems

OCR HAL Shim OCR HAL Shim

(c) 2015, Intel 5

OCR: Just the Facts . . .

• Instance of a task-based dynamic runtime
• Research prototype
• Dynamic datablocks, not mallocs
• Explicit communications
• Explicit description of relationships between things

• Now openly public development, RO to all, BSD license
• Single-node or clusters of x86
• Ramping for May release (with RW access)
• https://xstack.exascale-tech.com/git/public
• Spec 1.0, tutorials, examples, tools, etc.

• Extensions: Collectives, Region Parallel, Posturing, etc.
• Potential future spec inclusion: “breeding ground”

• Public wiki + such are in-flight

• Functionally complete: performance work is coming

(c) 2015, Intel 6

https://xstack.exascale-tech.com/git/public

Runtime vs. OS: grudge match

Hardware Blob

OS / Kernel

Hardware Blob

OS / Kernel

Hardware Blob

OS / Kernel

Hardware Blob

OS / Kernel

Distributed Runtime

Middleware Middleware Middleware Middleware

Application

Tupperware?

(c) 2015, Intel 7

Fragmentation & Composability

“Legacy” C

“OCR” C entry
Lib (MKL) x N

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C C C

Job A

Job B

(c) 2015, Intel 8

Non-exclusive execution models

• Task-based runtimes do not preclude other models

• You can run MPI or OMP on top . . .

• . . . just don’t expect full benefits that way

• Fragmentation is a guidance directive

• Composability is a requirement

• Where is the line between App and Runtime?

(c) 2015, Intel 9

Runtime vs Programming Model

HLL / DSL
Hero Scientist

Runtime

Tools

Loss of Semantic Information

Machine

Need for semantic information
(tuning, hints, guides) – (collectives, affinity, stream, ..)

(c) 2015, Intel 10

SAR: Async does matter . . .

(c) 2015, Intel 11

SAR: . . . but won’t fix algorithms

(c) 2015, Intel 12

App Flow Graph - Fibonacci

(c) 2015, Intel 13

Advanced Visualizations

• Video clip here

(c) 2015, Intel 14

Evaluation of Runtimes

• R&D Prototype vs Production
• What does performance mean?

• User code?
• Runtime overhead?
• Throughput?
• Scaling? (strong? weak?)

• Capability to <item> utilize <metric> ?
• Parallelism, power, bandwidth, latency, throughput

• Testing?
• Validation of results (performance loss for determinism)
• Validation of runtime
• Benchmarketing naturally goes here

• Opportunities in related fields: re-inventing the wheel?
• Factory automation, natural sciences (eg: marine life)

(c) 2015, Intel 15

Cholesky on OCR under FSim
Strong scaling, 100x100, 8-256 XEs, 1-32 CEs, unoptimized, greedy hierarchical work-steal

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

To
ta

l I
n

st
ru

ct
io

n
s

(m
ill

io
n

)

Number of XEs

Cholesky - Instructions

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300
To

ta
l d

at
a

tr
an

sf
e

rr
e

d
 (

M
B

)
Number of XEs

Cholesky - Network traffic

• Current memory allocator problem manifests
• Smart, hierarchical allocator system in review

• Greedy scheduling algorithm without heuristics = over-communicates
• No task prioritization by scheduler = imbalance in movement
• Revised scheduler framework and smart prioritization in review

(c) 2015, Intel 16

Memory Allocator Scalability Challenge
Rice Study: single node micro-benchmark, 8-core / dual socket E5-2690

• Study comparison of different allocator approaches on x86 nodes
• Guiding research direction for those uses that stress dynamic allocation

• Additional experiments in progress, allocator re-design

(c) 2015, Intel 17

Reservoir – OCR on 32-th SNB

• OCR matches or betters OpenMP in certain benchmarks
• Not a complete OCR implementation – no datablocks
• Uses a simple work-stealing scheduler

(c) 2015, Intel 18

Published results using
R-Stream with OCR

• OCR scales as per underpinnings for distributed x86
• Rice has GASnet implementation in progress for distributed x86 cluster runs

• Memory allocator and EDT scheduler represent scaling limits

• Managing hierarchy and complexity efficiently

• Moving from functionally complete to maturing technologies and limits

• All Open Source – available to all for use or modification
• Full release of FSim, OCR, and all associated pieces by August

• Re-use {modules, ISA, energy model, ..} in other tools/environments

• Port more SW ecosystem components on top of OCR and/or FSim natively

• TG sim scales to 1,152 cores using 64 dual-socket nodes
• 128 simulated blocks, ~10-30 MIPS/core depending on comms rate

• Runs on raw TCP/IP sockets or ibverbs (latency sensitive)

• Tinkering with GASnet port and/or MPI port

• Architecture model has clear interfaces in network model

Status and Opportunities

(c) 2015, Intel 19

Q & A

(c) 2015, Intel 20

Linux

Product
Platform

Bare Metal Shim

Prototype(s)

HTACNC

Tuning Guides

RStream

Low-level
compiler

HabC

Open
Community
Runtime

Event driven
Resiliency support
Introspection
Adaptation
Async support

Posix
Subset

Minimal
syscall(),
libC, libFortran,
libM, libstdc++,
. .

Work with
XPRESS
HPX
SLEEC
For best
functionality

Traleika Glacier Programming Environment

DSL

ROSE

Low-level
compiler

C++ Fortran

DSL, SEJITS

ROSE

Low-level
compiler

Python

C C++ FortranPython

MPI* OMP* . . .TBB

Evolutionary Environment Revolutionary Environment D-TEC DEGAS

R
u

n
ti

m
e

Tu
n

in
g

Sp
ec

ia
lis

t
A

lg
o

ri
th

m
Sp

ec
ia

lis
t

D
o

m
ai

n

Sp
ec

ia
lis

t
(c) 2015, Intel 21

Applications & Co-design Strategy

DOE Proxy Apps
ExMatEx

ExaCT
CESAR
TORCH

Mantevo
NERSC SSP

LULESH
SNAP
CoMD

. . .
<TBD>

Prioritization
DOE & Intel joint

discussion

Legacy Port
Ensure legacy tools in
place and functioning

without OCR on TG Arch

Legacy API
Ensure legacy

components/APIs work
on top of OCR

Refactoring
Redesign EDT-native version
with monthly on-site visits to

DOE experts

Analysis
With DOE experts understand

impacts of EDT model on
application viability

Enhancement
Extend OCR APIs and tools
for more efficient results,

scalability

Feedback/Key learnings

Step 1

Step 2

Apps Engineer

Legacy
Work

OCR
R&D Team

(c) 2015, Intel 22

