Global Arrays Runtime

Presenter: Daniel Chavarria-Miranda

Research & technical leads: Abhinav Vishnu, Jeff Daily,
Sriram Krishnamoorthy, Nathan Tallent

7

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Global Arrays: Global-view Distributed

Arrays

» Library-based, compiler-free PGAS programming model (20+ years of R&D)
» Deployed on largest systems (Mira@ALCF, Titan@OLCF, Edison@NERSC)

Available at 3,000+ sites around the world

» Large group of applications:

Chemistry: NWChem (223K cores), Columbus, GAMESS-UK, Molpro, Molcas, CP2K
Subsurface: STOMP (130K cores), Paraflow

Bioinformatics: ScalaBLAST (18K cores), Pgraph (120K cores), ArrayDB

CFD: Tethys

Astrophysics: Chimera

Power Grid: MCA, Kalman-filter

Quantum Monte Carlo: GAEinspline

Geoscience: PAGODA

electronic structure
chemistry

Subsurface
transport:

Bioinformatics: _ _
ScalaBLAST, GA is the standard programming STOMP, 130K procs.

model

18K procs.
NWChem, 223K procs.

GA Runtime Features & Design

» Original GA runtime: Aggregate Remote Memory Copy
Interface (ARMCI) [IJHPCA06]

» Supports one-sided RMA operations: get, put, accumulate
m Over native network libraries [IPDPS’04, IPDPS’07]
» Principal design criteria:

m True one-sided communication: synchronous &
asynchronous

m Active communication progress agent [SC'06]

m Optimized communication patterns for global array slice
access

o e.g. multidimensional strided [ICPP’08]

» Underlying execution model: Bulk Synchronous
Parallelism (BSP)

m Realized by UNIX processes + communication server
threads [CF06]

GA Runtime Features & Design (cont.)

» New runtime: Communication subsystem for Exascale

(ComEx)

m More flexible code base

m Support for native network libraries [HiPC’12]

m Support for different MPIl-based transfer layers [HIPC’14]

m Improved memory & resource usage for scalability
[CCGrid’13]

m Support for fault resilience [HiPC’10, CLUSTER’09, EuroPar'11,
PDP’11, JCTC'11, JCTC,13]

m Support for reducing energy consumption [JSC'13,
GreenComm’10]

m Diagnosing network contention [PPoPP’15]

» Beyond the process-based BSP execution model

m TASCEL (TAsk SchEduling Library): support for distributed

task-based work stealing at scale [SC’09, ICPP’12, HPDC'12,
ICS’12]

m Global Futures: data-centric active messages [CCGrid'12]

Diaghosing Network Contention %

» Growing ratio of cores to network bandwidth
» Growing interest in PGAS programming models
» PGAS models use one-sided messages

B Examples: process x gets data from process y
7 \

B Readily implemented Sl | | s x = °|—> S i e
on RDMA hardware NIC X _,_ G
(remote direct memory access) "1 /
» Contention (1) canincrease | NICX ey : P N NIC Y

message blocking time (e) el . I (DMA'
. psy : >

by integer factors ‘ time 1]

M Cf. two-sided: blocking time —| Routers/Switches [[§ |

function of contention & sync

Difficult to Reason About Network Contention %

» Asynchrony may lower contention
B Avoid bursts of communication during collectives
» Asynchrony may increase contention

B Introduce network hot spots writing (putting, scattering) or
reading (getting, gathering) data

» Challenges:

. : 31 [ps¥ . D o e
- Detect.kC.onte.ntloP at | S b | | Psx o] O | |S e
network interior (.2)- an NIC X -i—' nbget >
message target (!3) is 1 | |
remote from application NIC X | B / NICY
execution (!,) WALy | | NICY ={nbgetF=> : —
, : psy = >
B Attribute: Message delivery ‘ time m“
asynchronous with cores (°) — Routers/Switches [} ==

Detect one-sided network contention, quantify severity, attribute to app

Diagnosing Contention in NWChem DFT Carbon240 \;/

% fock_2e_cdf.F 52 PIC: QDR InfiniBand (oversubscribed fat | NWChem:

.- call fock_ge UG static routing); task 46; 64 nodes e asynchronous

o EE % llo, 1lhi, klo, khi, dlk, tmp) °

O EfE call fock_get_blk{nfock, vg_dens, ta.SkS. CompUte on
Y EE $ lo, lhi, ilo, ihi, dli, tmp) distributed arrays
“ ENM call fock_get_blk(nfock, vg_dens, . .
§ 92 § 1lo, 1hi, lo, jhi, d15, tmp) * avoids collectives
s - 100% of contention — 65% of ==
"3 Calling Context View W 1. Flat View execution time = due to get

|+ & ‘6 foo |15 AY A

: blocked tcontention (Sum/E) tcontention-initiator tcontention-target
43 1167 ga_get_ 4.78e+11 99.9% 4.76e+11 99.6% 2.32e+09 84.5% 4.74e+1l 99.7%
¥ 48 56: fock_get_blk 4.78e+11 99.8% 4.76e+11|99.65%| | 2.22e+09)80.9% |4.74e+11)99.7%

4 89: fock_2e_cache_dens_fock|3.70e+11 77.3%|3.6%e+11 77.2% 1.32e+09 48.2% 3.68e+11 77.4%
<3 91 fock_2e_cache_dens_fock 3.6le+10 7.5% 3.58e+10 7.5% .8le+08 10.2% 1.55e+10 7.5%

%]

b a 62: fock_2e_cache_dens_fock 2.63e+10 5.5% 2.6le+l0 G5.5% 2.3 .)
b <3l 87 fock_2e_cache_dens_fock 1.68e+10 3.5% 1.67e+10 3.5% 1.3 Contention mOStly at get =
b 48 71: fock_Ze_cache_dens_fock 1.49e+10 3.1% 1.48e+10 3.1% 1.3QRLUES (location of data)

: YWY 4 7ellvs. 2.2e9 (us)

Moving hot-spot (at target) reading data
2 gets (read) for each acc (write) Change global array

* gets contend for out links sending to initiator distribution to improve
* gets go over different links than accs total runtime by 20%.

TASCEL: Task-Parallel Abstractions

» Finer specification of concurrency, data locality, and
dependences

m Convey more application information to runtime
» Adaptive runtime system to manage tasks

» Application writer specifies the computation
m Writes optimizable code

» Tools to transform code to efficient implementation
separated from the application -

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Work Stealing

» A worker begins with one/few tasks
m Tasks spawn more tasks

m When a worker is out of tasks, it steals from
another worker

» A popular task scheduling strategy
m Well-studied load balancing strategy
m Provably efficient scheduling
m Understandable space and time bounds
Pacific Northwest

Proudly Operated by Battelle Since 1965

Retentive Work Stealing

Seeded Local Queues Actual Executed Tasks

Proc 1

Proc 2

Proc 3

Proc 1 Proc 2 Proc 3 Proc n

Proc n

Intuition: Stealing indicates poor initial balance

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Hopper: Performance

100 Persistence-based load balancing Retentive Stealing
['_".'.‘;'.'.'.'.';'.‘.'.'.';'.'.'.’.';'.'.‘ I 100 .
90 | g e, 1 90} 1 150
80 | h 80 |
70 | 70 | 1 100
60 ¢ 60 |
50 | { 50} { 50
40 | 1 4} &
g L StealRet-1 —+— T Q i

80 . Steal-1 —+— 30 StealRet-2 - 0
20 I NOLB-2 ------ ; 20 b StealRet-3 £}

PLB-3 &} StealRet-4
10t PLB-4 : 10 | StealRet-5 ---A--- 1 -50

oL PLBS A . . o L__Avg.tasks == |
9600 19200 38400 76800 9600 19200 38400 76800

» Persistence-based load balancing “converges” faster
» Retentive stealing also improves efficiency
» Stealing effective even with limited parallelism \;7/

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

100

90
80 f
70 f
60
S0
40 |
30 f
20 f
10 |

Intrepid: Performance

Persistence-based load balancing

W o 100

16384 32768 65536 163840

90
80
70 |
60
50
40 |
30 |
20
10

~
-~
.

StealRet-1 —+—

~, :
~.

~ -
-~
-
-~
-,

StealRet-2 ----X%----

StealRet-5 -7}
StealRet-10 ©
StealRet-14 -4

Avg. tasks ~--<---

2] 1000
© 41 500

..... T:‘.:.\:‘.‘.‘.@,.;-Q N
1 -500

16384

32768 65536 163840

» Worse performance for the first iteration
» Converges to a better efficiency than on Hopper \7/

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Global Futures — moving computation to

data

Po P4
(7] [72]
(7] (7]
o} o}
o o
o 13 o
S 13 a
=
finis ;o
v 2
(@)
—~ |
O - . m
o
— o
- . —
- -
—
o . o
©] [S
Z -
CUl Y
o - 1l g
SN—""

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Global Futures

» Chinook (2310 node DDR Infiniband cluster)
m 1 GA process per node, 6 threads

m 256 atom system with tiles of size 40

m 352 atom system with tiles of size 40

» Caching remote data improves scalability
®m Including accumulates

m Data reuse across threads

Execution Time SCF 256 atoms Execution Time SCF 352 atoms
1000.00

10,000.00

1,000.00 —

100.00

time inseconds

-8 futures
~=ideal
i processes 0000 7

time in seconds

~B-futures
~#—|deal

10.00

10,00 +

10 100 1000 10000 50 500 5000
cores

cores

Energy Efficiency Mechanisms for

Communications

» Dynamic Voltage/Frequency Scaling (DVFS)
m Scale down during communication, Freq (core), Voltage (socket)
m But may lead to increased latency

» Interrupt Driven Execution
m Yield CPU & wake up on network event, BUT may increase latency

No DVFS Yes
Default
Get Data Get Data
Polling 'I'H"H’H'H'H"_’ H —— J{." I DVFS scaling
I Interrupt
Get Data Get Data
Interrupt | + l—> + l> ’

——) Energy Saving &

increase in time

Handling Different Data Transfer Types

Leads to Differences in Possible Gains

» Contiguous data transfer
m Request DVFS scale down after data transfer request initiated
m DVFS scale up after data transfer has been completed

» Non-contiguous (e.g. strided) data transfer
m Requires data copy to/from intermediate buffers

m DVFS/Interrupt based execution performed after data transfer
request initiation

» Less potential gain on non-contiguous transfers

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

» Experience with GA, ARMCI & ComEXx is very valuable for
the community

m Real production applications running on it at scale
o Major users of LCFs and NERSC resources

m Have addressed key issues related to scaling, performance,
portability, fault tolerance

m Insights & inroads into emerging obstacles
o Energy & power
o Resilience

» Higher-level abstractions can be supported without
compromising performance

m Global-view access, task-based execution
» Flexible runtime framework can support various execution

styles \3/

m Task-based, work-stealing Pacific Northwest

NATIONAL LABORATORY

m Data-centric active messages Proudly Operated by Battelle Since 1965

THANK YOU
QUESTIONS?

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

