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Global Arrays: Global-view Distributed

Arrays

» Library-based, compiler-free PGAS programming model (20+ years of R&D)
» Deployed on largest systems (Mira@ALCF, Titan@OLCF, Edison@NERSC)

Available at 3,000+ sites around the world

» Large group of applications:

Chemistry: NWChem (223K cores), Columbus, GAMESS-UK, Molpro, Molcas, CP2K
Subsurface: STOMP (130K cores), Paraflow

Bioinformatics: ScalaBLAST (18K cores), Pgraph (120K cores), ArrayDB

CFD: Tethys

Astrophysics: Chimera

Power Grid: MCA, Kalman-filter

Quantum Monte Carlo: GAEinspline

Geoscience: PAGODA

electronic structure
chemistry

Subsurface
transport:

Bioinformatics: _ _
ScalaBLAST, GA is the standard programming STOMP, 130K procs.

model

18K procs.
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GA Runtime Features & Design

» Original GA runtime: Aggregate Remote Memory Copy
Interface (ARMCI) [IJHPCA06]

» Supports one-sided RMA operations: get, put, accumulate
m Over native network libraries [IPDPS’04, IPDPS’07]
» Principal design criteria:

m True one-sided communication: synchronous &
asynchronous

m Active communication progress agent [SC'06]

m Optimized communication patterns for global array slice
access

o e.g. multidimensional strided [ICPP’08]

» Underlying execution model: Bulk Synchronous
Parallelism (BSP)

m Realized by UNIX processes + communication server
threads [CF06]



GA Runtime Features & Design (cont.)

» New runtime: Communication subsystem for Exascale

(ComEx)

m More flexible code base

m Support for native network libraries [HiPC’12]

m Support for different MPIl-based transfer layers [HIPC’14]

m Improved memory & resource usage for scalability
[CCGrid’13]

m Support for fault resilience [HiPC’10, CLUSTER’09, EuroPar'11,
PDP’11, JCTC'11, JCTC,13]

m Support for reducing energy consumption [JSC'13,
GreenComm’10]

m Diagnosing network contention [PPoPP’15]

» Beyond the process-based BSP execution model

m TASCEL (TAsk SchEduling Library): support for distributed

task-based work stealing at scale [SC’09, ICPP’12, HPDC'12,
ICS’12]

m Global Futures: data-centric active messages [CCGrid'12]



Diaghosing Network Contention %

» Growing ratio of cores to network bandwidth
» Growing interest in PGAS programming models
» PGAS models use one-sided messages

B Examples: process x gets data from process y
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Difficult to Reason About Network Contention %

» Asynchrony may lower contention
B Avoid bursts of communication during collectives
» Asynchrony may increase contention

B Introduce network hot spots writing (putting, scattering) or
reading (getting, gathering) data

» Challenges:

. : 31 [ps¥ . D o e
- Detect.kC.onte.ntloP at | S b | | Psx o] O | |S e
network interior (.2)- an NIC X -i—' nbget >
message target (!3) is 1 | |
remote from application NIC X | B / NICY
execution (!,) WALy | | NICY ={nbgetF=> : —
, : psy = >
B Attribute: Message delivery ‘ time m“
asynchronous with cores (°) — Routers/Switches [} ==
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Diagnosing Contention in NWChem DFT Carbon240 \;/
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TASCEL: Task-Parallel Abstractions

» Finer specification of concurrency, data locality, and
dependences

m Convey more application information to runtime
» Adaptive runtime system to manage tasks

» Application writer specifies the computation
m Writes optimizable code

» Tools to transform code to efficient implementation
separated from the application -
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Work Stealing

» A worker begins with one/few tasks
m Tasks spawn more tasks

m When a worker is out of tasks, it steals from
another worker

» A popular task scheduling strategy
m Well-studied load balancing strategy
m Provably efficient scheduling
m Understandable space and time bounds
Pacific Northwest
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Retentive Work Stealing

Seeded Local Queues Actual Executed Tasks

Proc 1

Proc 2

Proc 3

Proc 1 Proc 2 Proc 3 Proc n

Proc n

Intuition: Stealing indicates poor initial balance
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Hopper: Performance

100 Persistence-based load balancing Retentive Stealing
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» Persistence-based load balancing “converges” faster
» Retentive stealing also improves efficiency
» Stealing effective even with limited parallelism \;7/
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Intrepid: Performance

Persistence-based load balancing
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» Worse performance for the first iteration
» Converges to a better efficiency than on Hopper \7/

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



Global Futures — moving computation to

data
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Global Futures

» Chinook (2310 node DDR Infiniband cluster)
m 1 GA process per node, 6 threads

m 256 atom system with tiles of size 40

m 352 atom system with tiles of size 40

» Caching remote data improves scalability
®m Including accumulates

m Data reuse across threads
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Energy Efficiency Mechanisms for

Communications

» Dynamic Voltage/Frequency Scaling (DVFS)
m Scale down during communication, Freq (core), Voltage (socket)
m But may lead to increased latency

» Interrupt Driven Execution
m Yield CPU & wake up on network event, BUT may increase latency

No DVFS Yes
Default
Get Data Get Data
Polling 'I'H"H’H'H'H"_’ H —— J{." I DVFS scaling
I Interrupt
Get Data Get Data
Interrupt | + l—> + l> ’

——) Energy Saving &

increase in time



Handling Different Data Transfer Types

Leads to Differences in Possible Gains

» Contiguous data transfer
m Request DVFS scale down after data transfer request initiated
m DVFS scale up after data transfer has been completed

» Non-contiguous (e.g. strided) data transfer
m Requires data copy to/from intermediate buffers

m DVFS/Interrupt based execution performed after data transfer
request initiation

» Less potential gain on non-contiguous transfers

o
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» Experience with GA, ARMCI & ComEXx is very valuable for
the community

m Real production applications running on it at scale
o Major users of LCFs and NERSC resources

m Have addressed key issues related to scaling, performance,
portability, fault tolerance

m Insights & inroads into emerging obstacles
o Energy & power
o Resilience

» Higher-level abstractions can be supported without
compromising performance

m Global-view access, task-based execution
» Flexible runtime framework can support various execution

styles \3/

m Task-based, work-stealing Pacific Northwest
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