Parallel Session VI: Runtime
Systems Research Questions

Andrew A. Chien
Zoran Budimlié

Josh Fryman

3/12/15 DOE Runtime Systems Workshop

Charter

“Identify research questions that need to be
resolved within the context of current experience
and knowledge.”

Prompt: Sections of the Runtime Systems Report
— Sorted: short ones first

Guidance: Tersely, in the form of a question.

— How to balance... What is the right... What features to
support...

Every section that follows is implicitly “Services”

General (cross-cutting) questions

How should the runtime services exploit

u

nderlying OS services to ensure security?

How do you control and optimize a non-

d

u
t

eterministic system?

ow do you propagate information up or down
ne runtime layers?

H
d

ow do runtime services interact across
pplications?

How does the need for resilience affect the
implementation of all runtime services?

Resilience

What types of resilience interfaces are appropriate for Exascale runtime systems?
— Application, Task-based PM/Es, High level PM/Es?
— Multiple runtimes or stacks of runtimes working together?
What types of Reliable Stores (local, regional, global, ..) are appropriate?
— Efficient implementations — flexible redundancy structure, size and speed
— How to exploit the wide variety of memory types (near/far dram, nvram, burst buffers, ssd, filesystems, etc.)
What types of scheduling (static, dynamic, intra-node/inter-node, ...) are appropriate?
— Work-stealing task schedulers can support task migration, and can adapt to different numbers of workers
— Data-driven tasks can be supported with highly asynchronous checkpointing algorithms
What types of Reliability Protocols are appropriate? (resilience composition — resilient resiliency)
— Efficient lightweight protocols suitable for HPC environments
— Suitable for Runtime internals, applications, perhaps other parts of the system
What types of error detection and notification services?
— How to reduce/eliminate errors?
— What types of errors and characterization of frequency, occurrence structure, etc.
— What are the limits of prediction of errors?
What are the right divisions of labor between runtime/application/0S?
— Applicaton/runtime collaboration
— Mitigation strategies/approaches?

— Should resilience mechanisms impose restrictions on programming models?
e Cost/benefit analysis
¢ How to minimize restrictions on programming models?

What is unique to HPC vs. cloud computing and what can we learn/leverage from existing models
Can we do root cause analysis of problems, and how?

Introspection (information)

What is the right tradeoff between comm/power/info-quality/SLA/QoS
— What are the right metric to measure effectiveness?
— At which levels of the system should introspection happen (up/down)?
What information should introspection service provide?
— How is the information going to be used
— What is the utility of the information (even beyond the life of the application)?
— How to evaluate if prediction is correct?
— How do we correlate information across levels?
— Is there a standard schema for this kind of information?
What is the scope of aggregation feasible?
— How do we allow users to customize aggregation?
How do we apply introspection to storage/interconnect too?

Naming

What virtualization of naming is needed to support <feature> ?
— Features = resilience/elasticity/load balancing/polymorphism/...
— Can we eliminate (virtualize) pointers?
— Distinction between Global Address Space and Global Name Space

What’s in a name?
— Is there some structure to names?
— What should be named (objects, tasks, data, locations)
— Will persistent storage be part of naming?

What forms of local/global/regional naming are appropriate?
— Name scope as well (spatial, temporal = how long is the name visible, ..)?

— How do you track names and changes of names and things that are not
named?

— What support should be there for discovery within applications and between
them?

What kinds of names should be application/runtime/hardware visible?
— What’s the cost and what hardware support is appropriate?

Location

What’s in a location?

— How do you describe a location?
— What is the information quality of location services?
— Are these 1-1 mappings or something more flexible
What are appropriate interfaces to other runtime services?
— Notification, callback...
— How do we express and discover affinity?

How much is the runtime’s responsibility?

— Who is allowed to change the location?
What is different for exascale’

— extreme scale, resilience

Communication

What sets of communication primitives should be supported?
— Point to point, one to many, many to one, third party
— How can SW control/specify/reconfigure communication services?

— Can communication primitives be broadened to encompass all data
movements e.g., including those needed for heterogeneous devices?

What inter-application communication services should be supported?
— And in-situ workflows
— How do we support communication across nodes?
What inter-runtime communication services should be supported?
— How is communication service within an application virtualized??
How are quality of service issues handled?
— What communication services are resilient?
— Isit app->runtime, or runtime<->runtime, or something else?

What kinds of introspection information should be provided by
communication services?

Concurrency Control

e How to do global termination detection?

e What concurrency primitives should be
supported on node and across nodes?

Scheduling and placement

What does it mean to prefetch on exascale machine (from where to where)?
— Can a user customize data movement?

What do we expose as controls to other layers?
— Hints vs directives?
— What underlying hardware support do we expose?
— How do we schedule to optimize power/performance/memory cost?
— How do you specify/control layout to optimize power/performance...?

— How do you do critical path scheduling?
* How do you detect critical path?
* How to avoid getting the scheduler on critical path?

— How do you generate and represent large-scale DAGS efficiently?
* How to maximize useful parallelism?

— Should the scheduler exhibit back-pressure to/from other levels of the system?
What changes in system-level scheduling and resource management are required
to support task and workflow execution models (elasticity...)

— Can the system also support User-level threads?

— What kinds of over-provisioning make sense?

How do you compose multiple schedulers and placement services?

— Can you build composable schedulers and placement services (as peers or hierarchical)?
— How do you do scheduling/data movement for different and complex memory hierarchies?

Resource Management (Power)

How do you best allocate power within <unit> ?
— jobs/nodes/hardware on a node/chassis/rack/net/storage/..
— What granularity is useful to be able to manage power at <unit> ?
What control should the runtime system have over power
— When should you load balance and when should you power balance?
— How binding is a user request?
— What controls to expose up/down the software stack for apps?

What application characteristics to pass to the runtime so that it
can reason about power/energy?
— How do you model power implications of application choices/design?
— Can software demonstrate that it can schedule for power?
— How do you visualize power?

— How do you transmit repetitive or long-term power need changes to
the runtime system?

Resource Management (cont’d)

Load balance
— How should the resource-level interact with the application-level?
— How do you quickly make room for adjacent jobs?

— What granularity for runtime components and should it be tuneable?
* Task models concurrently with big MPI ranks

— Does load balancing impose requirements on location/name services?

Locality discovery and management
— What are the dimensionality factors of locality?
e spatial, temporal, power, bandwidth, latency, resilience, QoS/SLA, . . .
— How do you measure locality, or its “goodness”?
* When is it useful to change locality (getting more or less)?

— How do you quantify the “working set” requirements of exascale applications at different
levels of the memory hierarchy?

— What are the non-NP-Hard ways to evaluate all this?
— How do you expose lower-level information?
— How do you push the control into the lower levels?

— Can SW reason about and exploit locality controls at exascale?
e |f using a dynamic task model?

Resource Management
(Adaptive Control)

What do you want (and do not want) to adaptively control?
— Should the user be able to set binding limits to the adaptation?

— How expensive are the controllers (power, performance, data), and
what are the tradeoffs?

— How do you prevent feedback loops?
At what point does your adaptive control logic need game theory?
— Hierarchy, government system, welfare system?

— Do you want to ensure fairness and how?
 How do you express priorities to the controller?
* Disambiquation of jobs
— Do you give priority to what you’re learning from the hardware or
from the higher layers?
How do you handle user input?

How do you integrate external adaptive control (libraries / HW)
with the runtime?

