
DAG-Based Runtime

Systems A Uintah

Perspective

Martin Berzins

Thanks to DOE ASCI (97-10), NSF , DOE NETL+NNSA ARL

NSF , INCITE, XSEDE, NNSA PSAAP2 Center

www.uintah.utah.edu

RTS hype?

Missing Questions

• Which Exascale applications are you

going to use to help drive your design?

• How are you going to develop at scale?

Software: John Schmidt,(9/14) Dav de St Germain Todd Harman Allen Sanderson

Extreme Scale Research and software teams

PSAAP Extreme Scaling team SANDIA

Alan Humphrey, John Holmen (1/15) Dan Sunderland (9/14)

NSF Harish Dasari Nan Xiao Jacqueline Beckvermit

Deflagration wave moves at
~400m/s not all explosive
consumed. Detonation wave
moves 8500m/s all explosive
consumed.

NSF funded modeling of
Spanish Fork Accident 8/10/05

Speeding truck with 8K
explosive boosters
overturned and caught fire

Experimental evidence for
a transition from
deflagration to detonation?

Develop at scale -Significant algorithmic

improvements needed + 200M cpu

hours on Mira

Uintah Background and Philosophy

• Initial design by Steve Parker 1997-2005 – based upon

the graphs of SCIRun. Independent of Charm++ and

other efforts

• Layered approach allows parallel development of

both the application and the runtime system - an

extreme programming approach.

• Since 2005 we pushed the design and rebuilt much of

the RTS but not the apps to run challenging problems

on the largest machines we can.

• Develop at scale, measure everything

An Exascale Design Problem - Alstom Clean Coal Boiler for 2018 to 2024

For 350MWe boiler problem. LES resolution

needed: 1mm per side for each computational volume = 9x 1012 cells

This is one thousand times larger than the largest problems we solve

today.

Temperature field

Prof. Phil Smith Dr Jeremy Thornock ICSE

ICE is a cell-centered finite volume
method for Navier Stokes equations

ICE Structured Grid Variable (for Flows) are Cell
Centered Nodes, Face Centered Nodes.

Unstructured Points (for Solids) are MPM
Particles

Uintah Patch, Variables and AMR Outline

ARCHES is a combustion code using several

different radiation models and linear solvers

Uintah:MD based on Lucretius is a new molecular dynamics component

• Structured Grid + Unstructured

Points

• Patch-based Domain

Decomposition

• Regular Local Adaptive Mesh

Refinement

• Dynamic Load Balancing

• Profiling + Forecasting Model

• Parallel Space Filling Curves

• Works on MPI and/or thread level

Existing Simulations of Clean coal Boilers using ARCHES in Uintah

(i) Traditional Lagrangian/RANS approaches do not address well particle effects

(ii) LES has potential to predict oxy--‐coal flames and to be an important design tool

(iii) LES is “like DNS” for coal

• Structured, high order finite-volume

• Mass, momentum, energy conservation

• LES closure

• Tabulated chemistry

• PDF mixing models

• DQMOM (many small linear solves)

• Low mach number approx. (pressure Poisson

solve)

• Radiation via Discrete Ordinates – massive

solves or Ray tracing.

• Uncertainty quantification

1210

Red is expt

Blue is sim.

Green is consistent

Uintah Architecture

Simulation

Controller

Scheduler

Load

Balancer
Runtime System

ARCHES

DSL: NEBO

WASATCH

PIDX VisIT

MPM
ICE

UQ DRIVERS

CPUsGPUs Xeon Phis

Kokkos Intermediate Layer

Applications code

Abstract C++ Task Graph Form

Compilation into C++ Cuda etc

Adaptive Execution of tasks

On specific cores/processors

Some components

have not changed as

we have gone from

600 to 600K cores

asynchronous out-of-order

execution, work stealing, Overlap

communication & computation.

Uintah Heterogeneous Runtime System (Multiple

GPUs and Intel Xeon Phis

Uintah Programming Model

Each task defines its computation with
required inputs and outputs and halo
levels

Uintah uses this information to create a task
graph of computation (nodes) +
communication (along edges)

Tasks do not explicitly define
communications but only what inputs
they need from a data warehouse and
which tasks need to execute before
each other.

Communication is overlapped with
computation

Taskgraph is executed adaptively and
sometimes out of order, inputs to tasks
are saved

Tasks get data from OLD Data Warehouse and put results into NEW Data Warehouse

The nodal task soup

Task Graph Structure on a Multicore Node with multiple patches

This is not a single graph. Multiscale and

Multi-Physics merely add flavor to the “soup”.

There are many adaptive strategies and tricks

that are used in the execution of this graph

soup.

halos halos external

halos
external

halos

The DAG Approach is

not a silver bullet

Uintah Phase 1 1998-2005 – CSAFE

overlap communications with computation.

Static task graph execution standard data

structures one MPI process per core. No

AMR.

Uintah Phase 2 2005-2010 improved fast

data structures, load balancer. AMR to 12k

cores, then 100K cores using new approach

before data structures cause problems.

Out of order and dynamic task execution.

Uintah Phase 3 2010- Hybrid model.

Theaded runtine system on node. One MPI

process and one data warehouse per node.

Multiple cores and GPUs grab tasks as

needed. Fast scalable use of hypre for

linear equations. Scales to 768K cores

OLD CSAFE

RESULTS

Fragmentation Multiple Graphs Uintah for ARL

Multiscale Calculations

• Uintah sub-tasks R and S not concurrent with P previously .

• Significant development makes it possible to mix multiple scale tasks

• Maximizes concurrency, allows multiple scales to run simultaneously

Uintah

Task P

Uintah

Task Q R

S

Uintah

Task

Graph

MPM

Particle

Scale bridging

(Selective) Concurrent execution

of multiple scales.

Galli

DFT: ab initio?

Can we go down to

Summary of Uintah Scalability Improvements

(i) Move to a one MPI process per multicore/gpu node reduces

memory to less than 10% of previous for 100K+ cores

(ii) Work on Runtime System involved substantial rewrites

(iii) Use optimal size patches to balance overhead and

granularity

(iv) Use only one data warehouse but allow all cores fast access to

it, through the use of atomic operations.

(v) Use out-of-order execution when possible

(vi) Prioritize tasks with the most external communications

Algorithm Random FCFS PatchOrder MostMsg.

Queue Length 3.11 3.16 4.05 4.29

Wait Time 18.9 18.0 7.0 2.6

Overall Time 315.35 308.73 187.19 139.39

Out-of Order Asynchrony for Scalability e.g. AMR fluid-

structure interaction

Straight line represents given order of tasks Green X shows

when a task is actually executed.

Above the line means late execution while below the line means

early execution took place. More “late” tasks than “early” ones

as e.g.

TASKS: 1 2 3 4 5 1 4 2 3 5

Early Late execution

Granularity Effects
• Decrease patch size

• (+) Increase queue length

• (+) More overlap, lower
task wait time

• (+) More patches, better
load balance

• (-) More MPI messages

• (-) More regrid overheads

• Other Factors
• Problem size

• Implied task level
parallelism

• Interconnection
bandwidth and legacy

• CPU cache size

• Solution- Self Tuning?

Resilience and Energy

• Need interfaces at system level to help us consider:

• Core failure – reroute tasks

• Communications failure – reroute message

• Node failure – need to replicate patches use an AMR

type approach in which a coarse patch is on another

node. In 3D has 12.5% overhead – suggested by Qingyu

Meng Mike Heroux and others.

• Will explore this with our NSF XPS project

• How likely is it that NVIDIAs self driven car will fail in

202X due to multiple GPU failures?

• Energy – we can and do reroute tasks if necessary as

load balancing is based on data monitoring.

Loose coupling to CFD due to time-scale

separation.

Radiation timescales are typically longer than

turbulent mixing timescales.

Required resolution decreases with distance →

AMR.

RMCRT:Incorporate dominant physics

• Emitting / Absorbing Media and walls

• Ray Scattering

User controls # rays per cell

• Each cell has Temp Absorb and Scattering

Coeffs ,

Radiative Heat Transfer key

• Replicate Geometry on every node

• Calculate heat fluxes on Geometry

transfer cell information globally on coarse mesh

except locally.

Strong Scaling Results for RMCRT on Titan

Sandia project to evaluate DAG software led by Janine Bennett

MiniAero is a 3D Euler code on a hex mesh

Preliminary results

after refactoring for Uintah

“Out of the box scalability”

Summary

• Layered DAG abstraction important for potability scaling

and for not needing to change applications code

• Scalability still requires tuning the runtime system. Cannot

develop nodal code in isolation. DEVELOP AT SCALE

• Future Portability: use Kokkos for rewriting legacy

applications +Wasach/Nebo DSL for new code. MIC and

GPU ongoing. Aiming at future DOE machines

• Linear Solvers Hypre and AMGX ? Trilinos Petsc?

