
Runtime Workshop Summary

Workshop Summary
• ATTN: Session leads

– Send your session notes (powerpoint, scribe notes,
napkins) to Sonia and Rob Neely

• sonia.sachs@science.doe.gov
• neely4@llnl.gov

– O(3) page summary of your breakout sessions.
– Drafts due April 3rd (3 weeks)
– Workshop report will be developed from this content

• Recap of objectives
• Summary of key findings
• Last chance for extremely profound statements
• Final words from Bill and Sonia

mailto:Sonia.Sachs@science.doe.gov
mailto:neely4@llnl.gov

Recap: Workshop Objectives

• Propose, discuss, and determine the required
characteristics of future extreme scale runtime systems

• Identify research questions that need to be resolved
within the context of current experience and
knowledge,

• Devise metric, measures, benchmarks, and means for
testing and evaluation for prototypes of runtime
systems,

• Discuss a research and development roadmap that will
result in one or more high quality runtime system
software packages that could be deployed in the 2023
timeframe, on extreme scale systems.

Outcomes: Research Agenda

• Define the intended impact of a future

runtime software program to the DOE
mission-critical applications. Identify what are
the primary research questions to be
answered. Determine the success metrics.
Define strategy for sustaining multiple
concepts/approaches within the scope of an
overall vision.

Outcomes: Driving Applications
and Workflows

• Define a set of specific workflows that is both

challenged by today’s limited methods and
exhibits the necessary time-varying operational
properties (e.g., irregular, multi-scalar, multi-
physics, dynamic), including storage and network
data access patterns (steaming, block, random
packets) that will be used to determine new
runtime system characteristics.

Outcomes: Interrelationships of
Runtime with OS and Programming

Interfaces/Models

• Establish the basic requirements of future

runtime systems in terms of their relationships
with the underlying hardware-oriented operating
system and separately with the programming
interfaces and compilation strategies. Explore the
nature of programming models that will employ
runtime systems for management of dynamic
adaptive execution to guide co-design of
programming and runtime methods.

Outcomes: Metrics of Evaluation,
Optimization, and Comparative

Analysis

• Define rigorous means and metrics that are

required to assess progress of future runtime
systems towards goals and performance
sensitivities to parameters. Describe
performance models to be employed.

Outcomes: Time-line of program
accomplishments and decision points

• A straw-man example of what an effective

research agenda would look like in terms of
accomplishments, useful intermediate
research results and demonstration
development, and application advances
through increased scaling and efficiency.

Key Takeaways from Workshop
(Did we capture the main points?)

• Need to define a process to work through all the issues we only scratched the surface on this week

– Need crisp definitions for some basic terms (Runtime, Tasks, Interoparability, dynamic vs static, …)
– Can we agree on a set of services that can be used to organize discussions, then hopefully APIs, and maybe

sharable implementations
• Tension between a monolithic approach vs. well-defined interoperable components
• Everyone wants control of the layers “below” then (including the apps)
• Need bi-direction communication between layers
• We just used “layer” twice in the last two bullets – but what are these layers?
• Need better agreement on what is “OS” vs “runtime” (acknowledging overlap)

– Privileged vs user space?
– What are the hierarchies of a runtime? Node level vs. system-wide
– Can we have interoperability between runtimes?

• Are dynamic runtimes capable and/or necessary of delivering at exascale?
• Emerging awareness of the ties between runtime systems and SSIO – can we share infrastructure?
• Runtime systems themselves will need to be resilient

– Not only resilience services, but resilient design and implementation of exascale runtime services is a critical
challenge.

• Introspection is a key aspect, but what can/should we query?
– Can the tools efforts by pathfinders for this effort?

• What is the path to production use? How/when do we engage the vendors?
– Need their help with hardware features, compilers, …

• Need metrics we can use to project benefits to exascale of concepts (e.g. overdecomposition,
dynamicism). Do the overheads outweight the benefits at scale?

• Need to catalog the research questions we’re learning the answers to

	Runtime Workshop Summary
	Workshop Summary
	Recap: Workshop Objectives
	Outcomes: Research Agenda
	Outcomes: Driving Applications and Workflows �
	Outcomes: Interrelationships of Runtime with OS and Programming Interfaces/Models �
	Outcomes: Metrics of Evaluation, Optimization, and Comparative Analysis �
	Outcomes: Time-line of program accomplishments and decision points �
	Key Takeaways from Workshop�(Did we capture the main points?)

