Argonne°

NATIONAL LABORATORY

MPI and OpenMP

Pavan Balaji
Computer Scientist and Group Lead

Argonne National Laboratory

MPI+X for effective programming?

= MPIlis only for inter-address-space (node) communication
— Within an address space, we need OpenMP, OpenACC, CUDA, etc.

= Hybrid programming vs. a single unified programming model
— The number of models we program to should not be too large, but a
small collection of standardized programming models which
interoperate with each other is not a bad thing

— MPI+OpenMP has demonstrated this successfully

nl'

-
e
-
-
-
—_
—
-
"
o<

S Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

MPI+Threads Programming

" |nteroperability requires the right semantics
— Neither MPI nor OpenMP meet these requirements just yet

— But they can be fixed

= As of MPI-3 and OpenMP-4, interaction semantics were
limited
— MPI semantics required sharing of MPI object information across all
threads in the address space

e Sharing data structures across the entire node is expensive
e Memory consistency is expensive
— OpenMP semantics do not expose concurrency

e Execution in two “threads” does not mean concurrent execution

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

State of Hybrid MPI+OpenMP Programming

= MPI+OpenMP interoperability can happen in multiple ways
— Funneled and Serialized modes are most common where a single
thread makes MPI calls at a time

— THREAD_MULTIPLE is becoming increasingly common where multiple
threads can make MPI calls simultaneously (“fully multi-threaded”)

e Functional implementation provided by almost all implementations
"= What’s missing?
— Performance of fully multi-threaded communication is not entirely

optimized
e Some research has already made its way into production supercomputers

— MPI specification needs new capabilities

— Threading and tasking models need new capabilities

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

MPI Implementation Optimizations

#7%5 U.5. DEPARTMENT OF
‘%9 ENERGY

Contention in a Multithreaded MPI Model

MPI_Init_thread(..,MPI_THREAD MULTIPLE,.); |® Multithreaded MPI

— Threads can make MPI calls

iﬁpragma omp parallel concurrently
— Thread-safety is necessary
MPI _Put(Q;
} Thread1l Thread2
Thread-safety can be ensured by: MPI_Put() MPI_Put()
= Critical Sections (Locks) 1
read

. . | i
- Possible Contention ! E”g“ - ENTER CStj'S:EITi:/
= Using Lock-Free algorithms EXIT CS

- Non trivial ! EXIT_CS()

—> Still does memory barriers

5 -

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

Coarse Grained Locking

= Single global mutex

= Mutex is held between entry and exit of most MPI_ functions

= No concurrency in communication

0.65 - .
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15

0.1]]
1 2 3 <

Process or thread count

Message rate (MMPS)

Processes — Threads —

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

Lock Granularity

= Using mutexes can affect concurrency between threads
— Coarser granularity = less concurrency
— Finer granularity = more concurrency

" Fine grained locking
Decreasing size of critical sections increases concurrency
e Only hold mutex when you need it
%’ Using multiple mutexes can also increase concurrency
e Use separate mutexes for different critical sections
%Acquiring and releasing mutexes has overhead
e |ncreasing granularity increases overhead
@Shrinking CS, using multiple mutexes increases complexity

e Checking for races is more difficult
e Need to worry about deadlocks

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

Levels of Granularity

Global

— Use a single global mutex, held from function enter to exit

— Existing implementation

Brief Global

— Use a single global mutex, but reduce the size of the critical section as
much as possible

Per-Object
— Use one mutex per data object: lock data not code sections

Lock-Free

— Use no mutexes
— Use lock-free algorithms

— Future work

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

Fine-grained Multi-threaded Communication

= Non-blocking sends access
global data

— Requests are allocated from a
global request pool

— Alloc and free of req requires
updating reference count on

communicator

Message rate (MMPS)

= Per-object tlp: thread-local
request pool

= Per-object tlp atom: use tlp and
atomic ref count updates

= Still some contention exists

Pavan Balaji, Argonne National Laboratory

0.6

0.55 |
0.5
0.45 |
04 r
0.35
03 r
0.25
0.2 g
0.15

0.1

Process or thread count
Processes — Per Object —
Global Per Object tlp
Brief Global — Per Object tlp atom —

DOE Runtime Workshop (03/12/2015)

Dimensions of Thread-Safety

e Critical Section
Granularity/Length

e Shorter is better but more complex

= Critical Section Arbitration
— Many blocked threads
— Who goes first?

e Random
e FIFO
e Priority

Pavan Balaji, Argonne National Laboratory

Threads

Arbitration .

Critical
 Section

Length

DOE Runtime Workshop (03/12/2015)

Unfairness May Occur!

Flat memory

- G CCC

Access should be random

S Pavan Balaji, Argonne National Laboratory

Hierarchical Memory

@@@'@

Access biased by the proximity to
the cache containing the mutex

DOE Runtime Workshop (03/12/2015)

Graph500 BFS

C°mp3§§ . Single Node
230 = Mutex 160
—_ +— mTicket
D 210 | mPriority %) 140
£ 190 @ 120
Z.170 S 100
(]
5 130 x
& ©
5 110 £ 60
T 90 2 40
a ()
70 g .
50
1 2 4 8 0
Scatter Number of Threads per Node Weak Scaling
2048
250 = Mutex 1024
230 +— mTicket 9
P 210 +— mPriority i 512
=
o170 & 128
O 150 @
g c 64
g 130 | £
2 32
5 110 - c
o 90 - o 16
“ 70 - .

all

Number of Threads per Node

—o—Mutex /

T —#-Ticket
| —&=Priority

16 64 256 1024

‘ 50 - |
Dwﬁ i DOE Runtime WOHRRGS (d371272015)

SWAP-Assembler
] 2048
= Blocking Send/Recv Mutex
1024 —m-Ticket
= Two threads per process o N\ ——Priority
— One sending — 256 \
— The other receiving é 198 \
= Strong scaling with 1 millions S 64
reads, each with 36 nucleotides i 32
16
8
4 , . |
4 32 256 2048

Number of Cores

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

MPI Specification Changes (proposed)

Endpoints Proposal Status

— Endpoints is proposed for MPI 4.0

— Hybrid WG has completed formal proposal

— Formal reading scheduled for December ‘14 meeting

Then on to voting!

— Further reading:

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/380

[SC’14] Enabling Efficient Multithreaded MPI Communication Through a Library-Based
Implementation of MPI Endpoints. S. Sridharan et al.

[ExaMPI ’14] Context id allocation for end-points communicators.
D. Holmes.

[WHPCA ’14] Enabling Communication Concurrency Through Flexible MPI Endpoints. J.
Dinan et al.

[EuroMPI ’13] Enabling MPI Interoperability Through Flexible Communication Endpoints.
J. Dinan et al.

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

MPI Endpoints Semantics

Parent

Comm /Parent MPI Procesm /Parent MPI Process\ /Parent MPI Processx

E.P.
i [Rank] [Rank] [Rank] [Ra nq [Ra nq Rank
Comm

000 000 000

MPI_ Comm_create_endpoints(MPI_Comm parent _comm, int my num ep,
MPI Info info, MPI_Comm out comm_handles[])

= Creates new MPI ranks from existing ranks in parent communicator
e Each process in parent comm. requests a number of endpoints
e Array of output handles, one per local rank (i.e. endpoint) in endpoints communicator
e Endpoints have MPI process semantics (e.g. progress, matching, collectives, ...)

= Threads using endpoints behave like MPI processes

e Provide per-thread communication state/resources
e Allows implementation to provide process-like performance for threads

S Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

MPI in ULT and Tasking Environments (MPI-5?)

= THREAD_MULTIPLE mode requires MPI to do two things
— Locking (for thread safety)

— Yielding (for deadlock avoidance)

= |n ULT environments, if concurrency of threads/tasks (or lack
of it) is exposed to the MPI library, locking is unnecessary
— pthreads
e Everything is concurrent

— gthreads/MassiveThreads

e Don’t know what is concurrent

— Need a new threading/tasking library (or more information exposed
from current threading/tasking libraries) to make this effective

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

New Threading/Tasking Libraries and
Dynamic Runtime Systems

User-level Threads (ULTs) and Tasks

= User-level Thread (ULT)

— Lightweight thread with low context-switch overhead
— More than one ULT can be mapped to a single OS thread
e May not be executed concurrently
= Why ULTs?
— Conventional threads (e.g., pthreads) are too expensive to express massive
parallelism
— If we create pthreads more than # of cores (i.e., oversubscription):
e context-switch and synchronization overhead will increase dramatically

— ULTs can mitigate high overhead of pthreads but need explicit control
= Where to use?

— To better overlap computation and communication/IO

e Low context-switching overhead of ULTs can give more opportunities to hide
communication/IO latency

— To exploit fine-grained task parallelism

e Lightweight ULTs are more suitable to express massive task parallelism

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

Motivation
Message Passing with User-level Threads

Overlap communication with computation using ULT

= Lightweight ULT, do
. tation, start
— ULT does not execute concurrently using ULT, K;,)Fr,r:psir?dlon sana
additional hardware resource, but takesturn | ™

. . Context switch to
to run by context switching ULT ULT,, ULT,
2 . .
communication
in background

Context switch back

= Asynchronous communication to ULT,, ULT,
communicate In

background

— No lock needed between two ULTs in the same
kernel thread

— Helps turn a MPI blocking call to a nonblocking
one

auljawi

<

— Decouples the operation of “send start” and
“send complete”

= Dynamic Tasking

— Providing automatic overlap based on task-
graph dependencies

s) Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

Qthreads

Lightweight portable ULT library

Locality-aware workstealing
scheduler

Supports multiple programming
models: Chapel, OpenMP

Pros and cons when integrated
with MPI:

— Pros: provides an easy interface to
use ULT

— Cons: lacks an explicit semantic for
parallelism. All ULTs can potentially
run in parallel thus lock is needed
everywhere

Pavan Balaji, Argonne National Laboratory

Registers

Signal
Vector

specific

Thread-

Memory

Registers

Signal
Vector

Thread-
specific
Memory

Stack

Process

Stack

Worker | | Worker

Worker | | Worker

Worker | | Worker

Shepherd Shepherd Shepherd
Sandia
) e,
Qthreads Architecture

Source: [Friar Tuck’s Chapel]

DOE Runtime Workshop (03/12/2015)

Argobots

Execution Streams (ES)

— Sequential instruction stream

e (Can consist of one or more work units
— Mapped efficiently to a hardware resource

— Implicitly managed progress semantics
* One blocked ES cannot block other ESs

Work Units

— User-level Threads (ULTs) ES, @ ES,
— Tasklets

Scheduler T
= Synchronization primitives @
U

Scheduler

Pool

<]
(
OO

ULT

— Mutex

— Condition variable Tasklet

— Future

O

OO EU@

Event

— Barrier .

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

MPI+Argobots: Data Movement in Distributed
Memory Systems with Lightweight Threads

]] Process
= Hybrid runtime of MPIl and Argobots
— lightweight and dynamically adapt to the
hardware resources I
= Two level of threads provide an explicit oLt || ot

semantic for concurrency ES

ES

— Execution Stream (ES) provides concurrent

execution

— User Level Thread (ULT) provides fast context
switch

vs. MPl+Qthreads

— Qthreads share its ULT among workers, so it
can not specify which ULTs run in parallel.
Argobots binds ULT to ES for explicit scheduling

— Highly optimized context switch in Argobots

Pavan Balaji, Argonne National Laboratory

Process
ULT ULT
ES ES

MPI 4:? MPI

Othreads |

Argobots

DOE Runtime Workshop (03/12/2015)

Application: HPCG

internal external

High Performance Conjugate 8_ -
Gradient (HPCG)
— Solves Ax=D, large and :
sparse matrix Ax=y
— Models 3D PDE. 27-point for k = [1: max_iter] && normr >
stencil, communicate with tolerance:
up to 26 neighbors MG(A, 1, 2);
Key Communication Patterns i l\<N_ATXP.BY(1 0,2,00,Z,).
— Global collective DDOT(r, z, rtz);
communication else
e MPI_Allreduce of local dot DDOT(r, z, rtz);
oroduct WAXPBY (1.0, z, beta, p, p);
, SPMV(A, p, Ap);
— Neighborhood DDOT(p, Ap, pAp):
communication WAXPBY (1.0, x, alpha, p, X);
* halo exchange with neighbors WAXPBY (1,0, r, -alpha, Ap, r);
DDOT(r, r, normr); HPCG

Pavan Balaji, Argonne National Laboratory normr = S%&EQQI(&H\%B"‘&R%%Q}P?&&E)PCG

Hiding Global Collective
Communication

— ult_ddot: a wrapper of DDOT

— overlap communication and
computation between iterations:

ult_ddot (in iteration i) and MG (in

iteration i+1)

— fork a ULT to do ult_ddot and join
in the next iteration

Hiding Neighborhood Communication

— ult_spmv: spmv for one neighbor
— for each neighbor, fork a ULT to

do halo exchange and a small part

of SpMV (communication)

— main ULT computes local spmv
(computation)

Pavan Balaji, Argonne National Laboratory

Overlapping Communication and Computation
using ULT

for k = [1: max_iter]:
MG(A, 1, 2);
ifk>1:
ult_join (thread);
If (normr <= tolerance) break;

ult_fork(ult _ddot, ¶m, &thread)

HPCG

SpMV(A, X, &Y): Sp MV

for each neighbor:

ult_fork(es, ult_spmv, &t[i]);
for i in [0: nRows]:

ult_yield();

for each j in row i:

y[i] += val[j] * x[idx[j]];

for each neighbor i:

ult_join(t[i]);

DOE Runtime Workshop (03/12/2015)

N .
Preliminary Results: HPCG w/ MPI+Qthreads

600 1.4

500

N
o
o

s MPI only
s MPI+Qthreads

MPI+Pthreads (ppn=16)

HPCG (GFlop/s)
&
o

N
o
o

il MPI+Pthreads (ppn=8)

—&@— MPI+Qthreads vs. MPI only

100

16 32 64 128 256 512 1K 2K
#Cores

= On 2,048 cores, HPCG using MPI+Qthreads shows performance
improvement of 19.8% over MPIl-only version, or 34.9% over
MPI+Pthreads version.

— As core number increases, the benefit of communication hiding begins to

reveal. DDOT% increases from 0.62% on 16 cores to 36.8% on 2,048 cores.
Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

\
Preliminary Results: SpMV w/ MPI+Argobots

SpMV Speedup vs. MPl-only

1.8

1.6

14

1.2
S
T
8_ 0.8 = = e MPl+Qthreads
n

0.6 ={=MPI+Argobots

0.4

0.2

0 T T T
16 64 256 1K
#Cores

e On 1,024 cores (grid size=64"3 per process), MPIl+Argobots shows an
improvement of 51.3% while MPI+Qthreads shows 27.7% compared
against MPI-only version.

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

Take Away

= MPI+X is becoming an increasingly popular model
— The big problem is neither “MPI” nor “X”, but rather the “+”

= MPI+X is an evolving model

— Far from perfect, but changes are underway for both the
implementations of “MPI” and “X”, as well as the standards to make
“MPI+X” bigger than the sum of the parts

= The work is not done, still a long way to go

— New “complementary” programming models are needed in some cases,

but they must not ignore the pieces that MPI has gotten right
— Orthogonal technologies that work with MPI (MPI+X) are important

Pavan Balaji, Argonne National Laboratory DOE Runtime Workshop (03/12/2015)

