
1

2015 Runtime Systems Workshop:
Summary Report

March 11-13, 2015
Rockville Hilton, Rockville, MD

Editors

Sonia R. Sachs, DOE ASCR
William Harrod, DOE ASCR

DOE Contacts

Sonia R. Sachs, DOE ASCR
Thuc Hoang, DOE NNSA

Report Contributors

Pete Beckman, Argonne National Laboratory
Andrew Chien, U. Chicago
Josh Fryman, Intel
Laxmikant Kale, UIUC
James Laros, Sandia National Laboratories
Pat McCormick, Los Alamos National Laboratory
Dave Montoya, Los Alamos National Laboratory
Rob Neely, Lawrence Livermore National Laboratory
Thomas Sterling, Indiana University
Kathy Yelick, Berkeley National Laboratory

Background
Proposed exascale computing architectures present scientists with a number of
challenges to reaching DOE scientific goals. Future runtime system software must
achieve significant improvements in efficiency and scalability in the context of user
productivity, performance portability, and dynamic adaptation.

In particular:

 Computing platforms must become significantly more responsive to power
constraints, faults, and new goal-based programming models. Current system
software is often very static in nature – computing jobs are given fixed numbers
of compute resources at the beginning of every job, power is not dynamically
adjusted to meet computational goals, and parallelism is often fixed.

2

 Applications that perform best when leveraging highly dynamic task-based
programming environments will require runtime systems that support new
dynamic mechanisms, spanning computing resources inside a node as well as
globally across the platform,

 New software frameworks supporting introspection, autonomic tuning,
programing tools to support debugging and performance adaptation need
runtime layers that can efficiently manage hierarchical memory, heterogeneous
computing elements, and shared storage systems.

In order to support the long development cycles of many computational science teams,
and enable good performance across a variety of machines from different vendors or
generations, advanced runtime systems must also be portable and have stable
interfaces.

To address the research challenges outlined above, this workshop convened
approximately 45 domain experts in High Performance Computing Runtime Systems
(RTS) together for 2.5 days with the following high level objectives:

1. Propose, discuss, and determine the required characteristics of future extreme
scale runtime systems �

2. Devise metrics, measurements, benchmarks, and other means for testing and
evaluation for prototypes of runtime systems, �

3. Identify research questions that need to be resolved within the context of current
experience and knowledge, �

4. Discuss a research and development roadmap that will result in one or more high
quality runtime system software packages that could be deployed in the 2023
timeframe, on extreme scale systems. �

The workshop agenda has a combination of invited speakers and open breakout
sessions for directed discussion. The sections in the reports that follow capture primarily
the discussions of those breakout sessions, which in turn covered the following topics:

 The architecture for future RTS software
 Runtime systems design
 Outstanding research questions
 A roadmap for the future

The participants of the workshop laid out current strategies for designing advanced
runtime systems, and then projected forward to the runtime systems requirements that
will meet application needs, and leverage expected exascale computing architectures.
Currently, there is no ASCR Program focusing specifically on runtime systems, but
instead they are a part of the X-stack program, the Exascale OS/R program, and several
other projects. The NNSA ASC Program also supports RTS research and development
in the context of advanced computing and programmatic needs for advanced
applications. The current co-design centers have provided insights for the needs for
future RTS software, but the co-design centers are currently not designed to support
tight interactions with system software. Future configurations for new co-design centers

3

could benefit from a trio of top-level participants: the Application, Platform Vendors, and
System Software.

Spurring renewed interest in this area is the ASC Program’s Advanced Technology and
Development Mitigation (ATDM) program element established mid FY14, which charters
the NNSA labs with developing the first set of “from scratch” applications in support of
the weapons program. Several ASC teams are actively exploring using next-generation
programming models (beyond MPI+X). This revitalized application effort, along with the
pre-exascale procurements in the CORAL (2017) and APEX (2020) timeframes led to a
sense of urgency at the workshop for hardened research solutions.

Key Takeaways

Some of the high level issues raised and suggested next-step actions include:

Identified Issue Suggested Action / Next Steps
A conceptual model for the
multiple layers of RTS, and
their role in software stack
would be very helpful to
focus roadmaps and
requirements. A taxonomy
and subsequent standard
terminology would help
tremendously.

 A shared architecture for the software stack
should be developed, with at least several of
the larger RTS components named and
described in a shared
taxonomy/nomenclature

 Key terminology and definitions should be
developed and referenced by the community
as part of a new “standard model” for
discussing system software.

 Define which RTS layers live within a node,
and which span a job, and which are global
to the system?

The ecosystem for RTS
components was not
articulated. Specifically,
which are: written by the
vendor, vendor productized
open source, community
developed and supported.
Sharing, reuse, and APIs for
components/services
follows the ecosystem model

 Working with the vendors and the computing
facilities, the ecosystem model for
developing or improving new components
should be developed.

 Identify which RTS services will be “stand
alone”, and reused by several components
(for example a data movement library) and
which RTS services are expected to be
deeply embedded into larger components.
For example, RTS support for specific
language features.

 As components are adopted, standard APIs
much be identified.

Metrics are poorly
understood. Latency and
bandwidth are helpful for
communication layers, but
what about task-based
layers? Introspection?
Dynamic power, etc.?

 Beginning with the components and
taxonomy described above, we must
articulate the requirements for those layers
and the metrics, benchmarks, and measures
for evaluating them.

4

 In the following sections, the breakout session chairs report on the session topic and the
associated workshop discussion.

There is a natural tension
between RTS layers and
dynamic control. What does
each RTS layer or
component control, and how
do layers coordinate toward
shared, goal-oriented
optimizations?

 As we unroll the RTS components and
layers, we must identify the resources that
are managed, and how layers coordinate
and optimize.

 What does a shared backplane for
communicating between runtime layers look
like? We must describe the requirements for
such a backplane.

 To support introspection that can be used
hierarchically (node, job, machine), we must
articulate the data that must be collected and
shared.

Adoption of new RTS layers
must be done in concert with
application teams and other
system software developers

 DOE must work harder to partner application
teams with scientists developing new RTS
layers in a co-design process. Co-design
should include system software, applications,
and platforms.

Runtime systems needn’t
only support resilience, but
be resilient themselves

 Resilience services, but also design and
implementation a exascale runtime services
is a critical challenge

The impact of RTS research
needs to be broadly
disseminated

 We need to catalog the open research
questions, track those that we’re learning the
answers to, and work to share peer-reviewed
success stories with the broader community

5

Session I Architecture for Exascale RTS
Chair: James Laros, Sandia National Laboratories

Summary
Runtime systems represent a broad class of software within the software stack. The
group explored a wide range of architectural issues for designing, building, and
interfacing to advanced runtime systems. The group used the guiding questions
provided to the attendees as a backdrop for the discussions. They also agreed at the
start of the session to avoid getting bogged down in terminology. However, the group
noted that a better shared understanding on concepts and terms may be a worthwhile
exercise for the community. In the summary below, each of the topic areas is presented,
followed by a summary of the discussion.

Execution Model
We first discussed the domain of the runtime system, multi-node versus single node for
example. This quickly led into a discussion of what can be expected or should be
expected of the runtime system from other layers that comprise the execution
environment. It quickly became clear that the answers to these questions would not have
concrete answers or consensus among the group and often depended on the service the
runtime was providing. We used the word runtime service consistently throughout the
remainder of the discussion.

We noted that runtime services should be able to be bypassed. While there was general
agreement on this topic there were exceptions noted where a service has a more global
responsibility beyond, for example, a single application. System services like resiliency
might fall into this category of being hard to bypass if doing so would affect other
applications or services but was also one of the first examples of a runtime service that
an upper layer might choose to bypass (possibly for performance reasons). It was
agreed that if you choose to subvert a service you couldn’t count on the benefits it might
provide. This of course does not address the previous concern.

The challenge of getting these layers to work together or be aware of each other
vertically or horizontally was noted and discussed with no resolution other than
identifying this as a difficult task. This was a repeatedly expressed need. See later in the
section where the sharing of semantic information is important.

Asynchrony
We almost immediately reframed this question as Performance Variability. We noted that
today we view our world as regular, which is increasingly not true due to hardware
variability, contention, algorithm irregularity, and other issues. Question: how do we do
resource management when access to resources is stochastic?

It was noted that asynchronous runtime systems, or programming models, could be
used to address or tolerate variability of communication (network or memory access for
example). It was also noted that these asynchronous methods could also introduce other
types of variability. Performance variability, whether caused by system variability or
variability introduced by other means might be handled by load balancing. Finding the
balance of how much coordination is appropriate was identified as a research question.
We need to know much more before understanding the opportunities for using hardware

6

to solve these issues. Things like fast atomics and lightweight task scheduling may be
candidates. The behavior of software on the hardware or the equivalent of global
performance counters could be very beneficial.

System Fragmentation
The glib answer to this topic was yes. Using the term service, it was recognized that it
depends on the service. If the service has a responsibility that spans the entire system
then it would have a global span. Likewise if the service or utility provided by the service
were application centric it would only span the resource used by that application. It was
additionally postulated that a service might only have a single node perspective.

Relationship between OS and runtime system
Some of the key points that came out of this portion of the discussion were also framed
in terms of runtime services. We discussed the distinction of services used by an
application and services that are used between applications. This conversation while
focused on the relationship between the OS and runtime had parallels to many of the
other topical discussions.

Part of the discussion that more specifically addressed the OS/runtime relationship was
the statement that the OS should act as a hardware abstraction and as much as
possible be able to get out of the way, or out of the critical path. My personal perspective
on this was this desire paralleled that to the motivations that produced early lightweight
kernel operating systems. This conversation overlapped the following topic. It seemed
that the tendency of the group was to consider this vertical path from the OS to the
programming model in deciding how things could or should be abstracted.

Relationship between Programing Models and Runtime Systems
What is exposed to and what is hidden from the programming environment? Also at
what layer does the hiding, if things are hidden, occur? Continued conversation identified
many layers here and the fact that much research was needed in this area. The
application, compiler, runtime and OS and what is presented and exposed at each layer
is unclear. Continued discussion identified that the balance of performance, portability,
productivity and understandability are critical to these choices.

The group discussed and recognized, without conclusion or further direction, the need to
capture the connection to other types of services like data management, security and
performance monitoring when considering the relationship between the runtime and
programming model (or by extension the application and compiler). Many of these do not
fall under our definition of a runtime system.

The group also discussed and supported comments made earlier in the day in Josh
Fryman’s presentation (I believe) regarding passing semantic information between both
runtime services and other layers. The group agreed with the importance of finding a
balance here and the potential impact to performance, scalability etc. that these
considerations could impact. It was agreed that this information is critical to expose to
the programming model so the platform could be properly abstracted. It was observed
during this conversation that we would need more influence or control over compilers
and JIT compilers could also be considered a service and some went as far to say that
the compiler should be considered an integral part of the runtime system. This
transitioned well into the next topic.

7

Compile‐time information, guidance, and constraints
We also changed how this topic was worded for our discussion to – Compile derived
information. The primary take home from this portion of the discussion is that a large
amount of research is needed in this area. We do not currently have enough impact in
this area -- was a generally accepted theme. The need to have a two-way street of
information through layers or services was again stressed. The term workflow became
more actively used as we went up the stack in our discussions. This and the previous
topic were discussed more as part of a whole so the observations already listed in the
previous topic section apply here.

Evaluation
We framed this question in a number of ways including asking ourselves these
questions. Who defines what is good? Should we define what success is on future
systems, which might be very different from success on current systems, by
improvements in workflow? What are performance metrics and how do we represent
them? Should there be an abstraction of performance metrics? Too many performance
metrics again produces variability (see previous topics). The question of what is missing
was also raised. The value of relative metrics was also discussed. Appropriate baselines
to show the effect of future decisions are important. Relative metrics are also important
in evaluating research prototypes especially when evaluating capabilities that did not
previously exist. We also need to evaluate on factors that were also not previously
considered important like power and energy.

We discussed the need for the system/platform to present the information we need that
is not currently the case. This relates to a previous topic, namely, what do we need from
the hardware. Even if the system provides this information, how do we collect it? How do
we collect it efficiently? A short list of what we want includes: time to solution, time to
solution with failures, time to solution with system variability, time to solution under
power/energy constraints, and runtime overhead (CPU, Time, Space – memory). We
want to evaluate the benefit provided versus the overhead introduced. Many of us have
heard that there may be an acceptable loss in performance given these additional
values.

The portability of the runtime system was also determined to be important. Algorithms
and data structures should be portable across multiple architectures. Runtime should
provide program portability.

8

Session II Architecture for Exascale RTS
Chair: Josh Fryman, Intel

Summary
In the exploration of future runtimes and execution models, a fundamental question is
whether there can be a distinction between a runtime (distributed or not) and an
underlying operating system. The evolution of features in both of these systems-software
areas has created a blurred boundary, confounded with terms indicating “hierarchy”
properties (such as middleware) that do not have a standard convention or abstraction.
Collectively, it undesirable to have imprecise vocabulary, but the imposition of a rigid
hierarchy such as the standard network layers will require community-wide effort.
Similarly, the dividing line between a programming model and the underlying runtime is
also blurred by techniques such as dynamic compilation, interpretive languages, and
complex hosted environments, with Emacs itself being a program which defies
classification.

Without a defined set of behaviors, it becomes hard to classify boundaries between
layers. These boundaries may be required to support a measurable level of
interoperability between components, as well as composability. Such boundaries not
only define a clean set of abstractions for basic functionality, they also are the interfaces
that will be used for standard management of access permissions, isolation,
fragmentation, etc. How each of the major and minor components interact with the
underlying platform – from basic kernel hooks of local hardware resources to filesystem
support – will require some form of standardization for the interoperability and
composability issues to be tractable problems. The evolution of these interfaces should
be matched to the integration of other supporting infrastructure: in-situ workflow
management, tools and analyzer frameworks, etc.

The lack of a clear taxonomy with well-defined characteristics and vocabulary will
continue to hinder effective integration and sharing of efforts across projects. This will
also limit the effectiveness of mapping different programming models, execution models,
and runtimes across various criteria to determine optimal strategies for a given problem
domain or algorithmic approach.

While such boundaries are lacking, an alternate issue to consider is what success
should be characterized by for future programming models, execution models, and
runtimes. Once success can be defined as a measurable outcome, differences between
these three inter-related components may suggest a natural division between what a
specific use-case requires and how it is best paired to a given runtime. This
measurement of success needs to account for tolerance of variance within extreme-
scale systems (frequencies, resiliency, power, etc.) as well as overall performance
criteria (throughput, wall-clock time, cost per job, etc.).

A further requirement for the success criteria to be defined is to address the balance
between basic features and over-arching goals for an end-to-end language-to-runtime
solution. Since “success” to the programmer and the hardware vendor will appear very
different at a semantic level, it is important to establish the requirements for each module
in the hierarchy from high-level-language (HLL) to the actual hardware. These
requirements will impact the assumptions and design models for each component, and
in turn will reveal the type of information each component needs to receive or pass

9

through in order to be successful at evaluation. Fundamentally, the programming model
should be exposing parallelism, while the programming environment and underlying
execution components should be utilizing that parallelism. The simplest form of success
is the quantification of the efficiency in each component to capture and realize the
parallelism potential of a specific problem.

The loss of semantic knowledge from HLL to eventual application binary image is a
fundamental problem. Future dynamic systems will need more knowledge about data
structures, communication patterns, and computation requirements regardless of the
underlying execution model. This information will enable better support for system
management of performance, throughput, and resiliency. Current tools and infrastructure
are a “lossy” push-down of knowledge from the HLL to the application binary, with very
little return channel information outside of profile-guided optimization tools and very slow
binary instrumentation libraries.

When the original application is created in a HLL that may be a domain specific
language (DSL), understanding why a problem in performance or correctness arises
when there is a dearth of semantic information in both directions becomes akin to the
problem of debugging a heavily optimized binary without symbolic information. This gap
of semantic exchange and metadata annotations from the HLL to the binary image, and
in reverse, must be addressed. In order to address this gap, however, the nature of the
information to exchange needs to be identified. The combination of defined modules in
the software stack with well-defined metadata exchange interfaces will reduce the “finger
pointing” phenomenon when errors inevitable arise in a given module. It will reduce the
search space, as well as provide a reproducible test case to demonstrate the underlying
problem(s).

Using the requirements analysis of each major component in the software stack, for
example, will indicate the basic types of metadata that are needed for success. By
ensuring that each component is capable of passing information required by higher and
lower components in the overall stack, the basic interfaces can be exposed – which
facilitates interoperability and composability. The gap that remains is to standardize a
metadata representation formation, as well as the specific mechanisms for representing
different types of metadata. From source-to-source translators and DSL compilers to
low-level compilers or optimizers, attributes pertaining to data (streaming, random,
dense, sparse, etc.) and compute (integer, real, bit-string, etc.) and communications
(reduction, multicast, barrier, etc.) are only the low-hanging fruit to be used. Further
analysis about the nature of a data structure’s relation to a computational kernel (stencil,
halo exchange, etc.) would allow for better optimization and utilization of the program on
a given machine, as well as providing better insights to the application developer for how
certain constructs have mapped to that machine.

Additional guidance or metadata pertaining to boundaries for a specific run (QoS
requirements, overall allocation of power, compute, memory, or bandwidth, etc.) should
be exposed as hints from the application programmer, yet allow for run-time (command-
line) over-rides or precedence settings. These would in turn drive policy selection
scenarios at the runtime and machine behavior level, up to and including throttle
feedback to the source program analysis that resource starvation was observed due to
limits.

10

Such limitation would also be necessary to limit thrash or poor interactions when multiple
agents are attempting to utilize the same resources, such as different applications and
runtimes sharing a common pool of compute agents with overlapping resource allocation
(over-subscription of physical resources). This problem of poor interactions comes to a
core issue of who determines the granularity of resources and jobs (or job compute
tasks) that the underlying software components operate upon, and how that granularity
feeds back into the completely execution environment. Given that future machines are
likely to be elastic, with resources appearing and disappearing as components fail and
are replaced during a live operation, the software components must also be capable of
dealing with elasticity in instantaneous views of overall system capabilities.

An over-arching problem is that resiliency is typically considered in isolation and after a
programming model and/or execution model are extant. In reality, the resiliency model
carries fundamental constraints on both the programming model abstractions and
primitives, as well as the manner in which the execution model components (runtime,
kernel) will interact. The architecture of a given resiliency approach should be
established concurrently, if not in advance, of a given programming or execution model.
By making resiliency and the requirements for resiliency a first-class citizen in the design
and evaluation of future components, the ideal outcome is to avoid the need for
disruptive retrofitting and breaking abstraction boundaries of the fundamental
components in the total software solution.

Ultimately, the problems remain of what are the “right” things to measure in the runtime
and execution layers – what should be measured, what is a metric for measurement,
what requirements do those modules carry, and how does the metric assess the
optimality of an approach to that module? In a related fashion, how can evaluation of
prototype platforms be fairly compared to production environments that enjoy decades of
hardened and optimized implementation efforts? It will remain a research problem of
how to disambiguate the merit of a design or approach from the quality of a specific
instantiation.

11

Session III and IV – Runtime Systems Design
Chairs: Laxmikant Kale, UIUC; Pat McCormick, LANL

Summary
The design of effective and efficient runtime layers within the exascale software stack
faces numerous issues. These challenges are rapidly evolving due to diverse
processor-, node- and system-level architecture designs and the need to address the
growing complexity of programming and the overall scientific workflow. Specific issues
include the need to manage increasingly complex memory hierarchies and types of
memories, support flexible data locality and processor affinity, supporting asynchronous
computation and data movement, and various issues related to resilience and energy
efficiency. These complexities must all be addressed in such a way that it will be
possible to effectively and flexibly leverage future hardware designs and also provide
multiple levels of introspection for the complex interactions between the hardware and
the associated software layers. This need extends well beyond the specifics and design
choices of hardware architectures and into the semantics of the supporting software
layers; including the higher-level programming models presented to application
developers and the lower-level runtime systems that are responsible for supporting
them.

The Memory System
The necessity of addressing the complexity of the memory hierarchy is initially motivated
by the impact of chip-level architectural design decisions (e.g. domains of relaxed
coherence, stacked high-bandwidth memories coupled with slower off-chip memories,
etc.) and the corresponding details of appropriate algorithmic selection and the
corresponding implementation details. At larger scales, locality concerns remain
complex with additional levels of non-uniform memory access costs, the introduction of
non-volatile memories, the potential use of processor-in-memory technologies,
distributed address spaces and the overall relationship with supporting large-scale,
persistent storage systems. Furthermore, dynamic application, software and system
hardware behaviors combine in ways that are extremely difficult to fully reason about in
a purely static manner. These characteristics will likely all be on aspects of the critical
path to achieving high-performance. The requirements, design and implementation
details of supporting runtime systems are therefore critical in helping both programming
system and application developers address these concerns.

The impact of memory system design decisions on algorithmic selection and
implementation clearly point towards the necessity to provide adequate controls for both
the placement and layout the data. Concepts such as naming (in place of memory
addresses) and higher-level data models must be exposed or abstracted in such a
manner to allow application developers to reason about application behaviors and
corresponding performance characteristics. Furthermore, the runtime must be flexible in
supporting a range of static, semi-dynamic/static, and dynamic uses of the memory
system to match the needs across a wide range of applications. When coupled with
emerging trends in storage system architectures, it is critical that aspects such as
persistence and composition across potentially differing namespaces be considered as
part of the design aspects of a runtime system specification and corresponding
implementation. Open questions remain about the separation of the memory and

12

storage systems. These aspects of data movement and the representation within the
runtime, and across the various levels of the memory hierarchy and storage system,
have consequences in supporting higher-level programming constructs as well as
aspects of supporting an efficient scientific workflow.

There are several considerations and challenges about the interfaces between runtime
software layers and the underlying operating system. In addition to determining what
capabilities belong at each of these levels, the memory hierarchy presents some specific
questions. In particular, there are interesting choices to be made throughout the software
stack. In particular, there are interesting choices to be made as to how the levels of the
memory hierarchy are virtualized and if they are best managed by the general policies of
the operating system or instead by the runtime layers where more explicit controls can
be adjusted/customized to meet the needs of application-driven performance
optimizations. In the latter case, it is important that details be communicated in a manner
that composition and dynamic decisions can be effectively and efficiently communicated
throughout the software stack. It will be critical to explore how these issues can be
presented in an abstract manner that allows for the composition of different
programming models/systems, supports platform portability and yet also allows
developers to effectively reason about and optimize the performance of their
applications.

Introspection
Given the increasing complexity at exascale, it is critical that application developers can
understand details relevant to the performance and nuances of both software and
hardware. Even in the case of very regular applications issues such as system-wide
power capping and job scheduling nuances can introduce performance impacts that can
be difficult to reason about. Such aspects, and how they are communicated to the
higher-levels of the software stack, should clearly be considered in the design of runtime
systems. This also requires the consideration of a well-defined set of policies and
abstractions that allow reasoning about the behaviors of the system in a meaningful way
without burdening the developer with complex, hardware-centric, low-level details. Key
questions remain in terms of defining these key abstractions and how they are
aggregated in applications that utilize multiple higher-level programming models and
supporting runtimes. There is a clear benefit from additional activities that look to
identify and potentially standardize a common API (or data description) for introspection
across runtimes and hardware interfaces.

Support for adaptivity within the runtime system requires dynamic monitoring of the
overall behaviors of the application and hardware. Application observables may include
computational loads of individual work units, communication patterns among the logical
entities (as opposed to those between processors), memory footprints of individual
logical units, etc. Hardware observables may include such metrics as core temperatures,
power consumption, etc. The information needs to collected and presented at multiple
levels of granularity, to enable appropriate runtime adaptation strategies. In an ideal
situation the cost of gathering introspection data should have little to no impact and
support should range from gathering data from hardware resources that range from
individual chips, the full system and finally out to the details of the supporting computing
facility (e.g. power monitoring). In cases where the introspection data is utilized by the
runtime system itself the costs of data collection should only be done where adaptive
techniques are desired. This suggests providing developers with the ability to turn

13

introspection and adaptive behaviors on and off to support a cost-benefit analysis about
both application and hardware behaviors and the impact the runtime system has upon
them.

It must be recognized that even when rich and detailed local information is inexpensive
to collect, the composition of these results across all the nodes of a job is
problematic. Aggregation techniques, as well as methods for understanding the
temporal nature of the data, are necessary. Therefore, techniques and introspection
databases must meld local information that is detailed and up-to-date, with global
information that is aggregated and somewhat stale. Furthermore, when such
information is presented to the developer (at any level of the software stack) there is a
potential to be overwhelmed by significant amounts of data. As a result, introspection
introduces an additional data analysis and visualization problem to aspects of the entire
workflow.

Reliability
The lowest levels of resilience mechanisms must be enabled at the level of the operating
system. To fully support this capability it is critical that hardware resources allow their
state to be determined and evaluated. From this point there are many implications for
runtime systems. The runtime must support the need to store persistence/recovery
(potentially versioned) data at different locations within the memory hierarchy (including
parallel file systems). Furthermore, applications must be able to be assured that any
lower-level implementation is guaranteed/recoverable and have enough information to
be controlled (if so desired), understood and reasoned about in terms of the associated
costs and impact on the application. The attribution of errors should allow the software
stack to identify problematic hardware resources and respond accordingly. It must be
possible for faults to be considered across the entire software stack and raised to the
location best suited to address the details of recovery.

Further consideration and studies need to fuller explore the vulnerabilities of both
applications and runtime systems themselves to faults. While tasking-based models
provide finer grained units of recovery, they do present a challenge to having to manage
more complex state recovery if they were subject to the fault. Furthermore, the runtime
should allow the application level code to help determine faults (e.g. soft errors) and
drive associated recovery mechanisms as needed.

Given the complexity of interactions between application codes, libraries, runtime
systems, the operating system and hardware, the implementation of fault recovery from
any given error might be overly expensive and, sometimes, it might simply be better to
let the application fail. Further studies need to occur to better understand the balance
between coverage, functionality, the impact on the overall software stack (including
applications) and the eventual likelihood of faults at exascale.

Energy/Power Management
Power management involves considering four distinct metrics: power, energy,
temperature and execution time. In general, the power level and core temperatures
provide constraints, while the others are part of the objective function that is being
optimized. From this perspective, three different software aspects of runtime systems
are responsible for power management: the job scheduler, one or more job-level runtime

14

systems, and a node-aware set of software layers. Each of these levels can potentially
be responsible for managing some aspect of their control over the overall power
bounds. However, an open question remains about how much control applications need
over power/energy details. It is currently the case that many such details are currently
hardware-specific and significant work would be needed to generalize this information
and make it useful at the application level across a range of different architectures.

The overall benefits of detailed application-level control (or hints) over power/energy
remains unclear and further study is needed. Lower-level interfaces and control are
potentially easier entry points but many details and studies will need to be better
understood. Such efforts should consider how best to portray the cross product of the
metrics, appropriate cost models and how they are impacted by various hardware design
decisions (e.g. power throttling) and system-wide and facility power management
requirements. Furthermore, broader efforts should be taken to explore common power
APIs can be leveraged across various system designs and generations. Finally, it
remains unclear if energy or execution time should be the primary criteria for the
exascale era.

Scheduling & Resource Management
Scheduling directly relates to the aspects of sequencing a set of operations that are
ready to execute on a given hardware resource. Separately, resource management
encompasses decisions based on memories, communication and processor resources
and can be considered as prioritizing different work-units based on the availability of
these resources. It includes load balancing by controlling the location of work units and
data units. The determination of these choices can range over a wide set of options that
can once again benefit from application-level awareness. This includes decisions for
reducing latencies introduced by data movement, available processor types in
heterogeneous system architectures, and the power metrics discussed above. Special
considerations must be given to how these choices can be expressed in ways that can
be tailored to the goals achieving performance on a given system architecture; but at the
same time maintaining a reasonable level of performance portability.

Additional related challenges arise from the manner job schedulers currently allocate
resources. In particular, today’s techniques tend to assume a rigid model where a
particular job is provided a fixed/static node allocation at runtime and has little to no
flexibility after a job has been launched. At exascale, there are potential benefits from
allowing jobs to become malleable, so the resources allocated to them can be changed
at runtime, either by the job itself or by the job scheduler (global runtime). The runtime
system as well as the application will need to adapt to, or potentially help control, such
malleability. .

A complex set of considerations arise when an application consists of the composition of
multiple software layers and runtimes that have conflicting approaches to
scheduling. Decisions made at one level are potentially in conflict or detrimental to
choices at another. A careful delineation and set of design decisions are necessary to
help address this concerns. While introspection abilities are clearly of benefit to
addressing this concern, steps must be taken to allow application level developers to
clearly understand the impact of composition. From the perspective of the runtime
system, applications, compilers and hardware should provide knobs, with clearly defined

15

effects, while allowing the runtime to control the knobs based on the evolution of the
runtime and system conditions.

Tool Infrastructure
Each of the aspects discussed above have an impact on how we consider the design
and development of a set of tools to help developers understand and reason about both
application and system performance and characteristics. This highlights the importance
of maintaining a semantic awareness throughout the toolchain and within all levels of the
runtime infrastructure and presents a much more transparent nature to the details within
the runtime infrastructure than is typically the case in present designs. Furthermore, it is
recommended that aspects of the tool infrastructure, including the compiler toolchain, be
considered/designed in concert with the runtime and higher-level programming
infrastructure(s).

Specific requirements of developer-facing tools must provide information about why,
when and where various choices were made by either direct programmer involvement or
by dynamic runtime level decisions. Being able to effectively support attribution of
performance bottlenecks is a difficult but important aspect to consider in the interactions
with tools and runtime systems. In cases where nondeterministic behaviors potentially
exist, it must be possible for the developer to enforce controls (e.g. ordering) at the cost
of potential performance impacts. This will be a critical feature to simplify the tasks of
debugging and reasoning about correctness. To support running at scale a clear
necessity will be to include the integration of data aggregation and visual representations
to help quantify and understand overwhelming amounts of data and complex
relationships between hardware and software in a meaningful manner.

Additional challenges stem from analyzing programs that are leveraging more than one
programming system and therefore potentially leverage more than one runtime
system. In this case tools must be able to reflect the model of computation presented so
developers can reason in terms of the supporting higher level abstractions and not only
the lower level details of the underlying software and hardware infrastructure.

Developers must also be able to understand the detailed decisions that the runtime
system has made (e.g. thread affinity and data locality) in a way that they can reason
about implementation and algorithmic tradeoffs in a knowledgeable but flexible and
coherent manner. In this process is must be possible to support both the isolation of
each system as well as to gain an understanding of the impacts of sharing between two
or more runtimes and higher-level programming models. Furthermore, tools should
support presenting results using multiple levels of abstraction – for example, the
presentation and/or levels of detail an application developer wishes to see may
significantly differ from those of a runtime system developer. Finally, in the case of
dynamic system and application characteristics real-time profiling of an application can
be critical in understanding the dynamic behaviors -- in this case an interactive
visualization of program execution could prove to be extremely valuable in the detection
of certain behaviors that would be extremely difficult via a post-processing session.

Evaluation
There are many metrics that can be used to evaluate the success of a runtime
system. The simple viewpoint suggests that its usage/adoption often implies a

16

significant number of other aspects including scalability, flexibility, portability,
completeness, ease of use and suitability for the given use case (e.g. appropriate level
of abstraction). Although metrics can clearly be beneficial, the associated details can be
complex and often difficult to both enumerate and measure. Attempting to use only
mini/proxy applications is not necessarily meaningful due to a lack of suitable complexity
to fully evaluate the system. Similarly, the implementation of a full-scale application
considers one aspect of complexity but only addresses the needs of a focused area and
set of methods. Although some layers of the runtime provide support for applications,
they are not directly exposed to the application developer. For example, they may
provide a layer of functionality needed by higher-level runtime capabilities and/or are
designed as a target for compiler code generation. These layers should clearly be
evaluated differently from those intended to address higher level, application facing,
programming challenges.

The reality of the situation is that various details and nuances all contribute towards a
successful runtime system and many different aspects need to be evaluated and
considered throughout its design and development. Where appropriate it is critical that
application-aware requirements and activities (even if driven by higher levels within the
software stack) and multiple architectures be considered as part of the overall evaluation
efforts.

17

Session V and VI – Runtime Systems Research Questions
Chairs: Thomas Sterling, Indiana; Andrew Chien, U. Chicago

Introduction
The runtime system in distinct forms has served computing systems principally in the
area of virtual machines (e.g., JVM) to facilitate advanced programming and only to a
small degree for HPC (e.g., OpenMP). For pathfinding system architectures to achieve
general and portable exascale performance, runtime systems are proposed as a key
enabling innovation to greatly improve efficiency and to achieve dramatic increases in
scalability. The driving opportunity is the exploitation of real-time information about the
system status and application execution to dynamically manage the system resources
and task scheduling. Runtime systems are also considered essential for future methods
of energy efficiency and resilience. The workshop on exascale runtime systems
examined the potential promise of runtime systems in their many possible roles to
enable exascale computing. These discussions included insights derived from current
generation experimental runtime software developed under the DOE XSTACK program
and other research initiatives as well as questions still inadequately resolved,
determined necessary prior to deploying fully comprehensive and robust exascale
systems.

An indirect consequence of the understanding of future runtime system software is its
interoperability, interface protocols, and complementary roles and responsibilities with
other system layers including programming models, compilation techniques, parallel
operating systems and highly scalable computer architecture. Research is required
therefore both directly in the design and implementation of the exascale runtime system
and in its supportive means and methods of the rest of the exascale system and
applications.

This report identifies and describes a set of research questions that must be addressed
in order to guide the development, deployment, and application of HPC runtime software
as part of a future system software stack for exascale computing. These critical-path
research issues are presented as a set of over-arching strategic questions that establish
the broad framework of a future research program and an additional, sometimes
overlapping, set of detailed research questions that expose, albeit incomplete, insight
into the challenges facing the potential promise and means of exploitation of exascale
runtime system architecture and implementation software.

Strategic Questions
The runtime system is an important innovation in HPC distinguishing it from conventional
approaches to current high end computing. The expectation that the transition to
dynamic adaptive control of both resources and tasks is promising but as yet unproven
although early experiences suggest strong potential at least in some cases. Research is
required to determine functionality, software architecture, interoperability with other
system layers, control policies, and achievable performance advantage. While there are
many detailed questions to be resolved, some depending on specific approaches and
assumptions, overriding strategic questions critical to the success of exascale computing
and relevant to all likely possible runtime systems need to be pursued. These strategic
questions are identified and briefly described below:

18

1) Parallel Tasks – what are the forms of the schedulable tasks that are managed

by the runtime system, the nature of the computation they encapsulate including
lighter weight parallelism, the criteria determining where and when they are
executed, and conditions of preemption if allowed. These may include
conventional threads, processes, atomic micro-actions, codelets, compute
complexes, and other executable and independently schedulable objects.

2) Memory Model – from the perspective of the abstract machine model, what is the
assumed memory structure including vertical hierarchy and lateral distribution
employed, managed, and optimized by the runtime system on behalf of the user
application? What are the performance trade-offs and performance opportunities
of dynamic allocation and redistribution?

3) Name space – fundamental to the operation of the runtime system is the naming
of local and distributed objects. A key research question is the trade-off between
the merits of global named objects with simplicity of access representation and
distributed or localized naming that reduces overheads of virtual addressing and
translation. Questions include what constitute first class objects including the
possibility of named executables (e.g., threads) for program control. PGAS
represents one example of name space definition.

4) Interface Semantics and Protocol – the Runtime complements both the compiler
and the operating system. It supports the compiler by bringing information about
the system state while supporting the operating system by bringing information
about the application requirements. It exploits architecture mechanisms where
possible and provides additional functionality for dynamic control where
necessary. The flow of information in both directions requires an advanced
protocol between the runtime system and the boundary conditions of the OS and
compilation layers.

5) Introspection – the runtime system can be open loop or closed loop as
determined by the degree of introspection incorporated in the control algorithm
and policies. There is a wide range of freedom of choice and runtime systems
may vary significantly depending on the control strategies adopted. The control
space defined and the control state transition methodology distinguish among
models. Machine learning may be employed both in real time and post mortem. A
major research issue is the control model for runtime system introspection.

6) Locality and Distribution – the major tradeoff of a scalable system computing is
the exploitation of locality for reduced latency effects and the distribution of data
and work to benefit from parallelism. The runtime system as part of its control
strategy must balance these to match the demands of the application and the
capabilities (and overhead costs) of the system architecture. This active control is
a critical question in the design of the runtime system and its interaction with the
compiler and OS.

7) Reliability – future reliability techniques may have to extend well beyond
checkpoint-restart as the MTTI diminishes below the critical point where the time
to checkpoint is greater than the time between single point failures. The runtime
system will play an important role in supporting fault tolerance techniques in
cooperation with the operating system and the programming/compilation
contributions. How this is to be done is a research question of importance.

8) Energy – reduction in energy and bounding power is critical to the practical
deployment and use of exascale systems. The runtime system may play a role in
reduction of energy consumption in conjunction with the architecture, OS, and

19

possibly the compiler. An open research question is the strategy for such energy
mitigation and the means by which the runtime system may contribute.

9) Interoperability – future complex user jobs may involve multiple interoperating
application and data analysis codes working in ensemble to produce a final
scientific result. The runtime system will be responsible, at least in part, for the
data flow and control signaling between the user application and other
constituent executables making up the entire workload. A current research
question to be resolved is the contributing role of the runtime system to the
application interoperability.

10) Architecture Support – currently conventional architectures include limited
hardware support for large-scale computation or runtime systems. Thus many
low level mechanisms will have to be implemented in software with the
consequence of overheads and the implications for parallel granularity. Research
in runtime systems will help answer the question of what innovations in
architecture may advance the goals of efficiency and scalability.

11) Performance modeling and evaluation – The design, operation, and assessment
of runtime behavior will depend on as associated performance model. Such a
model should be employed to guide the design, control the operation, and
support comparative evaluation of alternative approaches and runtime systems.

Detailed Questions
Prior art under the XSTACK program and other endeavors have educated many in the
field. This body of work should be exploited to augment other discussions as plans are
being formulated to guide future research projects under ECI.

 Why aren’t we answering the questions within the context of the XSTACK
prototypes and other runtime research that has been accomplished?

 What remains to be achieved from the accomplishments to date?
 Within the scope of current findings, what does the runtime community agree and

disagree on?
 How do the application drivers benefit or not from the adoption of runtime system

techniques?
 If old approaches are not working at least for some classes of driver applications,

to what degree are dynamic runtime methods likely to succeed?

Task is a general term for the work units or modules that capture an ensemble of work
which is separately schedulable and named (possibly with separate id space).
Modularity, encapsulation, hierarchy, precedence constraints, preemption, granularity,
and intra-task fine grain parallelism are all issues to be determined through research.
This is a major property of a runtime system and distinguishes among the many versions
of runtimes that may exist. Included are:

 What is appropriate task granularity? This is a trade-off of overhead and
parallelism. How to mitigate overhead to achieve the finest practical task size?

 How do tasks communicate? Are they pure value-oriented or do they engage in
global mutable state? Do they communicate with each other as through
externally accessible registers?

 In what way do tasks synchronize? Are synchronization objects like dataflow or
futures employed or simple BSP barriers?

 What are the scheduling policies? Is a task non-preemptive (goes to completion)
or preemptive to allocate execution resources to more urgent work?

20

Communication and messaging is fundamental to parallel computation for data
transfer and control. The runtime system makes use of low level networking media and
communication protocols as provided by the hardware architecture supervised by the
operating system. A diversity of alternative logical and physical methods may be
implemented and deployed. The choice of these determines the form and function of the
runtime systems and their strengths. Specific issues include:

 Communication primitives including point to point, one to many, and all to all.
 Possible generalization to encompass all data movement requirements.
 Intra-runtime communication across multiple nodes facilitating performance

portability.
 Quality of service issues including associated resilience support.
 Virtual communication fabric for introspection information.
 Message-driven computation and scheduling to move work to the data.
 Should the control layout be matched to or independent of the data layout?

Resource Management along with task scheduling is a major part of the responsibility
and role of the runtime system. The OS is assumed to allocate system resources to the
runtime to manage for the execution of an application. The runtime applies these
resources to the application and returns them upon application termination. Resources
extend beyond cores and memory to include energy and system-wide communication
channels. Among issues of concern are:

 How to best achieve load-balance and how does the application level interact
with the runtime resource manager?

 What is a useful level of granularity of work to be allocated to resources and can
the runtime perform aggregation of tasks to compound tasks on the fly for
efficiency?

 How does the runtime expose and exploit locality? What are the dimensionality
factors of locality and how is it measured?

 What is the protocol between the OS and the runtime associated with the transfer
of resources and how can the OS take back resources when necessary from an
executing runtime system?

 Which aspects of the applied resources need to be adaptively controlled? What
are the feedback loops and the control policies they employ? Does this involve
advanced Kalman filters or game theory to devise?

 To what extent does the user advise the runtime about required (or
recommended) resource usage and how is this information conveyed?

Resilience is essential to effective operation and application of exascale systems. New
methods of achieving reliability are likely and many questions of what such strategies
are possible and how the runtime system software will contribute have to be resolved.
Detailed questions to be addressed throughout the research program include:

 Interfaces to the applications, programming models and environments, and other
runtimes and the protocols for information transfer among them.

 Reliable stores at every level and memory types.
 Implications of reliability for task scheduling and distribution.
 Means of error detection provided by the runtime system and the types of errors

(error model/coverage).
 Runtime error notification framework with other system components.

21

 Roles and responsibilities of runtime in response to detected errors for recovery.

Program Actions are required to move the research forward. While a total research
program has yet to be devised, some key elements are already recognized as essential
at the initial stages. These include:

 Need for analysis of common and distinct concepts recognizing their similarities
and differences.

 Need for studies of applications to identify those that could benefit from runtime
strategies and methods.

 Determining what requirements have to be satisfied. Is there a particular class of
applications being addressed? What can the applications people tell us about
their applications?

 Need for point design studies of emulated or projected exascale systems.
 Need for studies of runtimes on existing systems and emerging systems.

Summary of Critical Research Questions:

Resilience
- What types of resilience interfaces and underlying implementations are appropriate for
exascale?
- What types of reliability protocols and composition capabilities?
- What are the right divisions of labor/functionality between runtime/application/OS?

Introspection (information)
- What are the right tradeoffs between quality and cost?
- What information should be provided at each level? And what granularity/aggregation?

Naming
- What virtualization of naming is needed/affordable for resilience/load
balance/elasticity/etc.?
- What forms of local/global/regional naming are appropriate? And are they visible to
applications/runtime/hardware?

Location
- Analogous questions as for naming

Communication
- What sets of primitives?
- What inter and intra communication services and are they virtualized? QoS?

Scheduling and Placement
- How to compose schedulers and placement services?
- What are exposed as controllable by other layers? Backpressure?
- What new capabilities are needed for scheduling and resource management to deal

with dynamicity and task execution models?

Resource management
- How to best allocate X (e.g., power, cores, memory)?

22

- What kinds of cross-layer interfaces, coordination and control?
- Detection/measurement of locality and exploitation?
- What is software/runtime/OS/hardware partnership for locality?
- What role does adaptive control play? And where should it not play? Fairness? X-
layer control?

23

Session VII and VIII – Runtime Roadmap
Chairs: Dave Montoya, LANL; Kathy Yelick, LBNL

The target timeframe for an exascale system is 2023. Work is going on across all the
ECI areas related to this goal by Laboratories, Universities, and Industry through various
programs. The focus for this report is the Runtime area within the ECI. Challenges
include quickly evolving and diverse new hardware architecture development, emerging
programming models to further implement asynchronous processing capabilities,
evolving deep memory hierarchies, increasingly complex application workflows and
others related to power and resilience requirements. The runtimes of tomorrow needs to
be more communicative than past models, dynamically interacting and scheduling
between application and system resource layers.

Roadmap approach and scoping
Runtime research is being done through ASCR X-Stack and OS/R programs, Design
Forward projects, the PSAAP II program and other efforts. ECI must interface with
research in Programming Models, Operating Systems, Application and Library
development, and Hardware Architectures. A key strategy is to identify a Production
Implementation Strand and a Research Strand, with a process for selecting and
hardening research results and moving them into production. This is important to
establish initial targets for higher-level software, while at the same time permitting
innovation in runtime research that may lead to radically different solutions with better
overall performance and productivity.

This process also helps move research efforts forward. As requirements are identified
from experience on the Production Development Strand it will drive exploration of new
research problems, while at the same time informing the research activities of Best
Practices.

Bounding
The questions that were repeatedly brought up during the workshop was, “What do we
mean by “runtime” and what are its requirements?” While there was not entire
agreement on the boundaries, there were generally two interpretations of the
terminology, one focused on user-level constructs that exist within a single executable
and are part of the programming model implementation and the other involving
management across workflows, interaction with external networks and data sources, and
use of privileged instructions reserved for the operating system. The ideas of
virtualization from the commercial data center world further complicate any clean
separation, as a single application may be packaged with its own operating system
image and multiple executables. Discussion around requirements came from
applications needs through Programming Models and also from the system environment,
hardware through the operating system and associated interfaces. New usage models,

Production Development Strand

Research Strand

2015 2023

24

such as computing based on real-time arrival of data or massive high throughput
workloads from uncertainty quantification also add to runtime requirements. In spite of
these difficulties, separating the Programming Model runtime from the more inclusive
System Runtime would probably facilitate future discussions and may allow interfaces to
develop to aid in separate research and development activities.

As suggested by the above figure, the Runtime components interact with other parts of
the exascale system, generally the Programming Environment above and the System
Environment below. The Programming Environment is the interface to the applications
and libraries; this needs to include communication, and needs to co-exist and interact
within the larger environment for resources and scheduling. The System Environment
includes the Hardware, Operating System (Node OS, System OS, Enclave OS), which
include various implementations. The System Runtime has long-term footprint within the
environment, which includes workflow and data analysis implementations, and has to
interface to protection and resilience components. We need an exercise to bound what
we see as the Runtime in order to facilitate useful discussions and eventually develop
common interfaces and components.

Questions that need to be incorporated into this bounding exercise include:
‐ Can your runtime work with multiple Programming and Execution Models
‐ Can different runtimes (or components) use shared resources or shared data from

multiple applications
‐ What are different usage models / application patterns
‐ Can a runtime be incorporated into a library approach
‐ How does data move between runtimes

Refining the bounds of the Runtime is an on-going effort but needs a process and
deliverable points to the production strand discussed earlier. This may also require an
organization to set dates and target deliverables. The approach is further discussed in
the following convergence discussion.

Convergence
As we have seen with past runtime convergence efforts such as MPI, significant
community experience was required before standards processes and organizational
approach for support is developed. There were several message passing interfaces that

Run me

Prog.
Model

Apps Lib‐
raries

Hard‐
ware OS

25

had been widely deployed in applications prior to the definition of the MPI standard, and
it continues to evolve based on application and system requirements. It is felt that in
regard to an ECI Runtime it is too early in the process go down the standard route and
develop a specification, although it should evolve to this at some point as it matures. It
was recommended that a best practices approach could be used to identify common
runtime ideas that have been demonstrated to be effective and evolve to the point where
interfaces and eventually standards could develop. However, fluidity is needed to adjust
to changing programming models, OS, hardware architecture, etc. A process for
establishing an initial production strand and a process for incorporating research results
into that production strand on an ongoing basis should be established within the next 6
months.

An approach discussed at the workshop is to view the runtime as a set of services rather
than a monolithic layer. The first step would be to identify a set of service categories
and then a minimal set of services in each based on a best practices approach. The
services would identify interfaces and communication points with other services and with
other parts of the software stack. These services may have more interdependencies
than in the past because of feedback loops needed for adaptability and there are still
open research questions regarding the ability to have separable services and how they
would interact. Developing a common API as in the Argo/Hobbes backplane is a good
example of a consolidation effort.

This initial process should begin by taking a survey and inventory of current efforts, their
service/interface points, and the extent to which the difference services can be
decoupled. This will be an introspective exercise by the community and would need to
include runtime efforts by programming model developers as well as any standalone
(programming model independent) runtime efforts. Having separate discussions about
these Programming Environment runtimes and the System Runtime seems appropriate,
since the inventory of services and interface points for the latter require expertise further
outside the core group and may require discussions with some of the OS and industry
efforts for things like an interface for hardware resource arbitration.

This would allow us to converge on a few runtimes that interoperate or establish
attributes for interoperability for all to move toward. Bringing narrow communities
together to understand their similarities and differences is a goal of this process. This
exercise should be done within the next 6 months.

Industry Integration
Industry is key in attaining exascale systems that deliver application results, and they will
be expected to deliver the machine and production environment to attain that goal. The
challenge is how to incorporate the research efforts that are occurring within the DOE
and in industry to develop the solution needed. There is also the case that if we want to
influence hardware to support capabilities such as tasking models, it needs to be
incorporated into their hardware designs up to 4 years before delivery for proper design,
integration and testing. We need to both leverage and influence what industry is
developing regarding OS and hardware architecture.

Issues encountered include that companies vary on willingness to share ideas and
collaborate depending on what they consider to be intellectual property and existing

26

partnerships. The common factors are that we all need use cases to better define
requirements and the availability and use of simulation and testbed environments to
prototype research ideas in pursuit of the use cases.

As part of the convergence discussion, Industry efforts of importance to the Runtime
should be mapped to understand potential overlaps and to define service/interface
points. This exercise should be done in the next 6 months

Characteristics of an Exascale Runtime
It was not the goal of this breakout group or workshop to define the services that a
runtime system might support or to identify the interfaces between them. However, the
discussions covered a number of questions that may aid in future planning activities.

How dynamic should an exascale runtime be?
There are many reasons to desire dynamic decision making in the runtime systems.
Because of hardware variability and application level adaptivity, attempts to estimate the
runtime cost of various components in advance is very challenging, so using such
information for load balancing and scheduling can be difficult to impossible. There are
various interpretations of the term “dynamic,” which can range from job launch time, at
discrete points mid‐execution (which can be globally), continuously on‐the‐fly (which
probably means locally or at least hierarchically). The overarching questions for the
research community are whether dynamic runtimes based on one of these definitions
are required for exascale performance, whether they can improve productivity and
conversely are they capable of achieving exascale performance. There is evidence that
dynamic runtimes can and have been effective on petascale machines, so another
version of this question is what application-specific information needs to be
communicated to the runtime system and what policies and mechanisms can be built
into a runtime system in an application-independent manner.

How much parallelism should be exposed to the runtime system?
Exascale systems will have much higher concurrency than current petascale systems to
address the performance growth without clock speed improvements, In addition,
concurrency is needed to mask latencies of memory accesses, communication, I/O, and
synchronization. For portability across systems an attractive approach is to have
programmers somehow express all available parallelism (or at least much more than
they expect to need) and have either compilers or the runtime system map this to the
limited hardware resources. The question from the runtime perspective is how much
concurrency should be exposed to the runtime and how can that be managed to keep
resource utilization (memory, cores, bandwidth, etc.) under control. Traditionally,
runtime systems have had to “throttle” some concurrency, but better hardware and
system support for operations like thread scheduling may make this less important. In
general, the group felt that the two extremes -- all available application concurrency or
just what is required for available hardware cores--are probably both impractical.

27

How should application information about locality and load balance be
communicated to the runtime?
Many application domains have information that can be used to optimize resource
utilization, e.g., computation and memory load balancing. For example, some adaptive
mesh refinement codes are currently balanced using a global analysis based on space
filling curves to evenly distributed load based on approximate notion of cost. Direct
linear algebra solvers have a complex set of task dependencies that can be expressed
as a directed acyclic graph that can be dynamically scheduled; yet layout of the data and
tasks is often static. Dynamic runtimes systems today often allow some type of control
over mapping in a distributed memory setting, but the mechanisms for expressing those
mappings are not common across approaches. There was also extensive discussion
about how load balancing should be done, what units of work should be used, what type
of naming should be used, and how dynamic both load balancing and scheduling should
be. Current research projects are exploring various approached in this space.

How should the runtime interact with other parts of the system?
The complement to the previous question about application information also arose in
considering interactions with the rest of the system. For example, how the runtime
system should interact with the storage system, with operating system protection and
resource management, with resilience mechanisms (failure detection and recovery) and
energy management. The overarching question for each of these topics was whether a
feature of the system should be exposed to the programming model, ignored entirely, or
hidden by the runtime system.

28

2015 ECI Runtime Systems Workshop ‐ Agenda
Location: Rockville Hilton, Rockville, MD

Wednesday, March 11, 2015

 Topic Speaker

1:00pm - 1:20pm Welcome and Introduction – RTS
Exascale Computing Initiative
ECI NNSA ASC Perspective

William Harrod
Director of Research, Advanced
Scientific Computing Research (ASCR)
Thuc Hoang
Program Manager, Advanced
Simulation and Computing (ASC)

1:20pm – 1:40pm ParalleX/HPX Runtime for
Exascale

Thomas Sterling
Indiana University

1:40pm – 2:00pm Open Community Runtime Joshua Fryman
Intel

2:00pm – 2:20pm Adaptive Runtime Systems for
DEGAS

Kathy Yelick
Lawrence Berkeley National Laboratory
(LBNL)

2:20:pm – 2:40pm ASCR Runtime System
Summit Report

Milind Kulkarni
Purdue University

2:40pm – 3:00pm Break

3:00pm – 4:30pm Parallel Session I: Runtime
Systems Architecture (set 1)

Chair: Jim Laros
Sandia National Laboratories (SNL)

 Parallel Session II: Runtime
Systems Architecture (set 2)

Chair: Joshua Fryman
Intel

4:30pm – 4:45pm Report Back Session I
Runtime Systems Architecture

Jim Laros
SNL

4:45pm – 5:00pm Report Back Session II
Runtime Architecture Debate

Joshua Fryman
 Intel

5:00pm Adjourn

29

Thursday, March 12, 2015

 Topic Speaker

740am – 8:30am Continental Breakfast

8:30am – 8:40am 2015 ECI RTS Workshop Sonia Sachs
ASCR

8:40am – 9:00am ASC’s Code Needs Todd Gamblin
Lawrence Livermore National
Laboratory (LLNL)

9:00am – 9:20am Exascale Runtime Systems
Architecture and Design

Ron Brightwell
SNL

9:20am – 9:40 am DAG-Based Runtime Systems A
Uintah Perspective

Martin Berzins
University of Utah

9:40am – 10:00am Adaptive Runtimes: Charm++
Case Study and Lessons for
Exascale

Sanjay Kale
University of Illinois Urbana-
Champaign (UIUC)

10:00am – 10:20am ARGO Pete Beckman
Argonne National Laboratory (ANL)

10:20am – 10:40am Break

10:40am – 12:00pm Parallel Session III:
Runtime Systems Design (set 1)

Chair: Pat McCormick
LANL

 Parallel Session IV:
Runtime Systems Design (set 2)

Chair: Sanjay Kale
UIUC

12:00pm – 1:00pm Lunch

1:00pm – 2:00pm ASC Panel on RTS Topics
Optimizing RT, Tools and
Interfaces A Task-Based PM for
SC

Kevin Pedretti,, SNL
Martin Schulz, LLNL
Josh Payne, LANL/Ben Bergen,
LANL

2:00pm – 2:15pm Report Back of Session III Pat McCormick
LANL

2:15pm – 2:30pm Report Back of Session IV
RTS Design Session

Sanjay Kale
University of Illinois Urbana-
Champaign (UIUC)

2:30pm – 2:50pm

MPI and OpenMP Runtime Pavan Balaji
ANL

2:50pm – 3:10pm Global Arrays Runtime Daniel Chavarria-Miranda
Pacific Northwest National Laboratory
(PNNL)

3:10pm	–	3:30pm Break

3:30pm – 5:00pm Parallel Session V: Runtime
Systems Research Questions (set
1)

Chair: Thomas Sterling
Indiana University

 Parallel Session VI: Runtime
Systems Research Questions (set
2)

Chair: Andrew Chien
University of Chicago

5:00pm Adjourn

30

Friday, March 13, 2015

 Topic Speaker

7:40am – 8:30am Continental Breakfast

8:30am – 8:50am Legion: Runtime System Pat McCormick
Los Alamos National Laboratory
(LANL)

8:50am – 9:05am Report Back of Session V
RTS Questions Working Group

Thomas Sterling
Indiana University

9:05am	‐	9:20am Report Back of Session VI		 Zoran	Budimlik	Rice	University

 9:20am – 10:30am Parallel Session VII: Runtime R&D
Roadmap (set 1)

Chair: Kathy Yelick
LBNL

 Parallel Session VIII: Runtime
R&D Roadmap (set 2)

Chair: Dave Montoya
LANL

10:30am – 10:45am Break

10:45am – 11:00am Report Back Session VII
Runtime Roadmap VII

Kathy Yelick
LBNL

11:00am – 11:15am Report Back Session VIII
Roadmap_Session VIII

Dave Montoya
LANL

11:15am – 11:35am Scalable Storage I/O workshop
report summary

Rob Ross
ANL

11:35am	‐	12:00pm Workshop	Summary Chairs:	Pete	Beckman,	ANL	
Rob	Neely,	LLNL

12:00pm Adjourn

