DEGAS

Dynamic Exascale Global
Address Space

Katherine Yelick, LBNL PI
Vivek Sarkar & John Mellor-Crummey, Rice
James Demmel, Krste Asanovi¢c UC Berkeley
Mattan Erez, UT Austin
Dan Quinlan, LLNL
Paul Hargrove, Steven Hofmeyr, Costin lancu, Khaled
Ibrahim, Leonid Oliker, Eric Roman, John Shalf, Erich
Strohmaier, Samuel Williams, Yili Zheng, LBNL
+ Several postdocs and students!

DEGAS Overview

DYNAMIC EXASCALE GLOBAL ADDRESS SPACE

DEGAS: Dynamic Exascale Global Address Space

Energy / Performance

Node Optimizations

Hierarchical Programming
Models

(

(

Communication-Avoiding
Libraries and Compilers

\

\.

N

Adaptive Interoperable
Runtimes

J

N

Lightweight One-Sided
Communication

S

Resilience

DEGAS Overview 2

PGAS: Partitioned Global Address Space

Global address space

* Global Address Space: Directly read/write report memory
* Partitioned: data layout and control layout through partitioning
* Runs on shared memory and scales on distributed memory

. 1 DIEGAS

PGAS Languages

UPC: production CAF: Features in
(multiple compilers) | FORTRAN standard

~

PGAS

UPC++: DEGAS Others: Chapel,
research (HPGAS) Titanium, X10, ...

DEGAS Overview 4

UPC++ DEGAS: PGAS with “Mixins”

« UPC++ uses templates (no compiler needed) | [s: 16 [4 x 5// X: g
shared_var<int> s; / Y A
global_ptr<LLNode> g’ 18 /é 63 27
shared_array<int> sa(8); 7 : =

/ A\
. . Y sa:
 Default execution model is SPMD, but
PO p1 p2

 Teams for hierarchical
algorithms and machines

teamsplit (team) { ... }

* Remote methods, async

async(place) (Function f, T1 argl,..);
wait(); // other side does poll();

* Interoperability is key; UPC++ can be use with OpenMP or MPI

How to Use DEGAS for Application and
Machine Challenges at Exascale

DEGAS Overview 6

App Challenge #1: Random Access to Large Memory

Meraculous Assembly Pipeline

reads Perl to PGAS: Distributed Hash Tables

e * Remote Atomics

* Dynamic Aggregation

* Software Caching (sometimes)

* Clever algorithms and data structures
(bloom filters, locality-aware hashing)

- UPC++ Hash Table with “tunable”

runtime optimizations

Human: 44 hours to 20 secs 16384 -
[]
Wheat: “doesn’t run” to 32 secs 8192 BN
Scaffolds using Scalable Alignment 4096 1
8 2048
c
[e]
§ 1024
Combines with new algorithm to 512
=unhan merAligner-wheat
anchor 92% of wheat chromosome ideal-wheat
o256 | *===E== merAligner-human
- iéij\?va,g:r?llé:nn?ﬁuman
Transforms process of discovery for de 128 | =-e== Bowtie2-human . . .
b I 480 960 1920 3840 7680 15360
NOVO assem y Number of Cores

Evangelos Georganas, Aydin Buluc (MANTISSA), Lenny Oliker, Jarrod Chapman (JGl), Dan Rokhsar (JGl)

App Challenge #2: Data Fusion in UPC++

Distributed Matrix Assembly
| | Remote asyncs with user-controlled
? : resource management
 Team idea to divide threads into

\vq—' —> mantle injectors / updaters
— * 6x faster than MPI 3.0 on 1K nodes
* Seismic modeling for energy applications - Improving UPC++ team support

“fuses” observational data into simulation
e With UPC++, can solve larger problems

-
g

100

Parallel Efficiency
O
o

8
l
=

m

V=Y N _=82e5| . :
75 i : '

Cores: 48 192 768 3K 12K

French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle global

tomographic model using numerical seismic wavefield computations (F & R, 2014, GlI,
extending F et al., 2013, Science). See F et al, IPDPS 2015 for parallelization overview.

=22e5| - SR]

. JDEGAS

App Challenge #3: Toward Adaptive Mesh Refinement

“restricted” (non-ghost) Useful in grid computations including AMR

cells 14-00 TMini-GMG multigrid on Edison
. interseftion __ 1200
\ R ! (copieq area) L 0.00 Fine-Grained =>*=Array
1 : w)
- V § oo BUK P
! ! -
: ! oo 6.00
' ' 8=
| i c 4.00
Ly T S
__— . . & 2.00
gridB grida T —————
ghost cells 000
8 64 512 4096 32768

No. of Processes (x 1 OpenMP)

ndarray<double, 3, global> gridB = bArrays[i, j, k];

gridA.async_copy (gridB.shrink (1)) ;

 The UPC++ arrays from Titanium; “views” for slicing, shrinking, and
arbitrary index (not 0 or 1-based)

 The performance is close to that of a version that explicitly packs/
unpacks (bulk) and to MPI

* The flat (no OpenMP) version is faster than hybrid

Amir Kamil, Shan Hongzhang, and Yili Zheng

TiDA: Tiling as a Durable Abstraction

Didem Unat, Cy Chan, Weiqun Zhang, John Bell, John Shalf

1 type(tile) :: tl
2 integer :: tileno, tlo(2), thi(2), i, j
f 3 double precision, pointer :: ptrA(:,:)
| 4
111 / 5 | do tileno=1, ntiles(tilearr)
] vV ey 6
7 ptrA => dataptr(A, tileno)
8 tl = get_tile(tilearr, tileno)
9 tlo = get_lwb(tl)
v ¥ 10 thi = get_upb(tl)
11
12 do j=tlo(2),th1(2) Telement loop 1
13 do i=tlo(1), thi(l) felement loop 2
. 14 !loop body
Logical tiles Isolated tiles Contiguous tiles 15 ptrA(i,i) = do_something(i,j)
16 end do
17 end do
18

19 end do end of tile loop

* Plans to include TiDA-style optimizations into UPC++ arrays
— Add loop nests so inner ones fit in cache, e.g., 3-loop matmul = 6-loop
— TiDA: Add tile shape/size information to each array
— Optionally change the data layout to match
— Can also add ghost regions as needed

10

App Challenge #4: Dynamic Load Balancing

 Static: Equal size tasks Regular meshes, dense

Q Q Q Q Q matrices, direct n-body

* Semi-Static: Tasks have different Adaptive and unstructured

but estimable times meshes, sparse matrices, tree-
based n-body, particle-mesh

QQQ Q o methods

* Dynamic: Times are not known

until mid-execution Search (UTS), irregular
boundaries, subgrid physics,

Q Q Q Q O unpredictable machines

Dynamic (on-the-fly) useful when:

Load imbalance penalty > communication to balance
Load balancing can’t solve lack of parallelism

11

Dynamic Load Balancing in UPC++ with Habanero and OCR

Global address space 1

Function shipping across nodes Multidimensional
arrays /

3

Local . - : : é 01
task'-... Ny =
1 A e I 3
queue 1 1 i =
| | | £
I | I 2
(0]
Y Y n_

0.01 /

AN U W—- =
é § % é % % é %' . % % ; % 0.001 T T T T T T T T
S o %, G s, o0, 7,

Total cores
. r’. o0t AP »
. el SR RANUPPPREL L —+— UPC++ —x— HabaneroUPC++
Multi-threading Private address space (a) SampleSort
1e+06

el
100000 /

10000 /
1000

=

* Dynamic tasking option in UPC++

— Demonstrated with library version
of Habanero, runs on OCR on node

Performance (FOM z/sec)

— Combines with remote async

100 -+ T T T
1 8 64 216 512

= Dynamic load balancing library for
domain-specific runtime in UPC++ e

DEGAS Overview 12

Towards NWChem in UPC++

* High-performance computational
chemistry code

— 60K downloads world wide

— 200-250 scientific application
publications per year

— Over 6M LoC, 25K files
— Scales to 100K+ processors

credit:nwchem-sw.org

Internal tasking, memory management,

and application checkpoint/restart

* New implementation on GASNet
replacing ARMCI MPI + {portals, ofa, dmapp}

* Plans for new Hartree Fock algorithm
using global work stealing in UPC++

13

App Challenge #5: DAG Scheduling

UPC++ async’s can specify an implicit DAG
Experience with UPC DAG Scheduling before it’s time
— Assignment of work is static; schedule is dynamic
Currently developing Sparse Cholesky in UPC++
— Joint with FastMath (M. Jacquelin, E. Ng) and Y. Zheng
— Minimum degree ordering
Two issues: dynamic scheduling in partitioned memory
— Can deadlock in memory allocation from overlapping communication
— Solution: “memory constrained” lookahead

-

;l-lil : ”.“J

A

Ll

[]
O

some edges omitted

DEGAS: Dynamic Exascale Global Address Space

(: : : \ A
v Hierarchical Programming
QO U
c < | Models)
o = 4)
£ E Communication-Avoiding Q
5;’ c (Librariesand Compilers || §
P B ; : iy =
- & Adaptive Domain-Specific A
> Interoperable Runtimes -
o O
2 = [Lightweight One-Sided J

Communication N)

Distinction in runtimes: who owns “main()”?

DEGAS Overview 15

DEGAS: Dynamic Exascale Global Address Space

Hierarchical Programming
Models

Communication-Avoiding
Libraries and Compilers

(

/ \u

\

Y 4
J \u

Adaptive Domain-Specific
. Interoperable Runtimes |

Lightweight One-Sided
Communication | |

Resilience

Energy / Performance
Node Optimizations

DEGAS Overview 16

Machine Challenge #1: Manycore Nodes

two-sided message

message id

data payload

one-sided put message

address

data payload

 Two-sided message passing (e.g.,

send/receive in MPI)
— Couples data transfer/synchronization;
sometimes what you want

* Global address space decouples

synchronization

— Very lightweight (often used under 2-sided)

— Pay for what you need!

* With many cores, want to avoid

bottleneck from:

— Large software stack on 1 (LW) core
— Cross-model cost from hybrid (MPI+X)

host
CPU
>
network
interface
————»
memory
18000
16000 e=p==Berkeley UPC
— eli=Cray UPC
§14000 ee=Cray MPI
S 12000
=10000
S
S 8000
3
S 6000
S 4000
2000
0 —\ T T T T T T T T T T T T T T T
M PRGNS
VT A N AN N
Msg. size > @ o9

17

Machine Challenge #2: PGAS on a Chip?

* Exascale nodes may not be cache coherent: domains of coherence
 PGAS lesson: don’t cache remote values (trivially coherent)

— Remote accesses do have to “see” cache; but not all cores
« MPI 3.0: TBD inter-node; less likely the right model within nodes

*p=.. ..=a[i];
Translates to:
void upc_memput(shared void *dst, const void *src, size_t n);

MPI_Put(const void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
'N MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPl_Win win)

Explicit memory levels (local store and NVRAM) well suited to “vertical” PGAS

18

DEGAS: Dynamic Exascale Global Address Space

Hierarchical Programmin (\

v [erarchical Progra g J
c C Models
o O
= E Communication-Avoiding @
€ 'E Libraries and Compilers =
V Lir : N[=
& = Adaptive Interoperable %
> o L Runtimes)| =
o O
2 — Lightweight One-Sided

L Communication)L)

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview 19

Machine Challenge #3: Communication is Expensive

 Many algorithms have provably-optimal variants

— Linear algebra, dense and sparse

— Direct N-body and now K-body

* Generalize to compilers
— Mellor-Crummey demo’d

in compiler for MatMul
— Theory being generalized

600

500

400

300

200

Execution Time Per Timestep (sec)

100

0

Penporn Koanantakool
and K. Yelick

20

T

mm Allre 15
Idle

mm Shift 10

mm Setu

mm Comr 5

1 2 4 8 16 32 64 128 256

Replication Factor (c)

Thm (Christ,Demmel,Knight,Scanlon,Yelick): For any program that “smells like” nested loops,
accessing arrays with subscripts that are linear functions of the loop indices

#words_moved = Q (#iterations/Me)

for some e we can determine

Thm (C/D/K/S/Y): Under some assumptions, we can determine the optimal tiles sizes up to

constant factors

Machine Challenge #4: Accelerators

* | was hoping these would go away, and they still might, but meanwhile...
* Code generation options: compiler, DSL, annotations,...

— DEGAS CTree uses Python introspection on ASTs (joint with ASPIRE)

— Domain-Specific Compiler uses LLVM for code generation
e Automatic performance tuning to reach limits (uses OpenTuner)

Application or kernel 3500 v+ Energy-optimized|]
eoo Time-optimized
9 C 200N °
|° 100 trials (~2 sec/each): .
Best Energy: 1.41 sec, 38.3 joules o . °
cc/ld Best Time: 1.16 sec, 73.8 joules . oo
i — $ 2000} . . .
cache = . : 4% . e
I5 [SEJITS J 1500¢ o™’
o Framework o oo ¥
Q 1000} o8 % P
2 [DSEL Compiler]——> ‘é' .
c P .SO .
.y - 500
[Hardware / Operating System J
10 15 20 25 30 35 40 45

seconds

| DEGAS DEGAS Overview 21

Towards Shift Calculus in SEJITS

* Working toward 2" (beside D-TEC) Shift Calculus DSL
* Pieces so far:
— Arrays in UPC++

— New optimization framework (Ctree) by M. Driscoll
— Currently implemented part of HPGMG benchmark in stencil DSL

— Other results on simpler stencils from ASPIRE collaborators

NVIDIA GeForce GT 650M
) Peak GFLOPS = 652.8
Speedup of Kernel Fusion For Stencils
6
M 2 Fused Kernels
M 3 Fused Kernels
I 4 Fused Kernels)
78% of Peak 82.5 % of Peak
2 cBls
) ==
ot
o “d\N\
&
Unfused Kernel Fused Kernel
I I |).1 1 10 50
0 256 512 1024 2048 4096 Arithmetic Intensity

Size of input

22

DEGAS: Dynamic Exascale Global Address Space

O " Hierarchical Programming \
e 2l Models)
© O~ .
S E Communication-Avoiding @
€ € Libraries and Compilers || S
V5l . 2 —
e Adaptive Interoperable &
= o Runtimes J| &
o O
2 — Lightweight One-Sided

L Communication)

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview 23

Resilience in a Distributed Exascale GAS

* Resilience strategy: System to Application, GAS-specific
— Affinity-aware BLCR at NODE-level
- Consistency coordination at RUNTIME-level

Containment domains at APP/LIB-level

 Recent progress
— GAS-specific CDs (semantics and interfaces, e.g UPC++ API)
— Affinity-aware BLCR prototyped - 50% speedup!

— Consistency coordination designed containment domains GAS semantics

e« Sane, scalable resilience!

Average Execution Time (Sec)

900
800
700
600
500
400
300
200
100

(o]

Benchmark run time after restart

Nafalf RI CR | em—
Affinity-Aware BLCR =3

T T 17T 17T 17T 1771
[N I Y I R |

BT SP FT MG LU CG UA IS
NAS Benchmarks (CLASS = C)

e Strict vs Relaxed A
* Relaxed —
Strict Least-Common B
-Comm. Logs awetorcn
- Dependencies - -
- Data exchange vii __—< Pl
Actual comm. | [E]9rlijPlc P
feley _-}\-/"' (3) Upon Replay.
(1) Inital Communication C 1unicat
To CD 'G To CD "H'
(or data differs)

24

DEGAS Programming Components

Hierarchical PGAS with Interoperability and Dynamic Scheduling as Needed

UPC+ UPC++ UPC++ MPI + UPC++
+ DAGs + TaskQ UPC++ + OpenMP

UPC++

+ OpenACC

PGAS Data Structures Adaptive Scheduling Structures

Domain-Specific Runtime Structures
(DAGs, TaskQs, etc.)

Distributed Data Structures
(Arrays, Hash Tables, Graphs, etc.)

Domain-Specific Domain-
Communication-Avoiding SEJITS Specific
Code Generators Resilience

Communication

Manycore and Multicore nodes with scratchpad

PGAS Contain-
ment Domains

D
GASNet-

Interconnect

Node
Runtimes

memory and limited cache-coherence

Managed Discovery in DEGAS

Production Stack Ongoing Research

Communication-
optimal compilers
Containment
Domains Includes
DS-Compilers Rose, Chill,
(SEJITS) OpenTuner,
Schedulers, Data OCR, XPI,
structures,... Rambutan,

and other
DAG schedulers XStack and
* Autotuning Search [E2tall
Open*,1/0O, BLCR GASNet projects
etc. GP Compilers

* New programming constructs and implementation techniques
transition from research to production based on:

— Demonstrated application need and feasibility (performance,...)
* Research provides risk tolerance and upside potential

UPC++
Multi-Dim Grids

Teams

Scheduling Structures

Data structures

MPI,

DEGAS Overview 26

Comments

* A “bad” machine can turn easy problems to a hard ones
— Must be enough to overwhelm locality advantages of a (semi)static

— Bad things happen between nodes; easier to fix (load balance) within
Two reasonable approaches to irregularity in hardware / applications:

 Expose all parallelism in a DAG (with all synchronization and
communication on edges); write “mapper” of some kind

— Make dynamic execution the default and infer locality structure

* Provide “abstract” hierarchical model of machines and let programmers
write to them

— Offer dynamic scheduling / load balancing as options
Two reasonable approaches to architectural node diversity:
* Full fledged compiler
* Small compiler (maybe)

A good graduate student can make any programming model look good

DEGAS Overview 27

Q&A

How are programming models differentiated from programming environments
and what roles to they serve that are distinct but mutually supporting?

— Programming environment generally includes tools; this is not a well-accepted
distinction so not important to focus on

— Clearly tools are important
What are the key new abstractions for parallelism that the community must

adopt to succeed at exascale? How should parallelism be identified and
concurrency managed in these models?

— Abstraction of future systems
Are there breakthroughs in programming models and environments that we

should explore, in addition to continued incremental improvements to existing
ones?

— Compilers: High risk, high reward for productivity and performance

— DSLs: many companies are supporting their own languages (and compilers), including
DSLs

— Full task-based models

What are the most promising ideas for programming abstractions to represent
data and its distribution across the lateral and hierarchical memory structures?

— HPGAS

DEGAS Overview 28

How should PM/E represent persistent objects and the storage system to
programmers?

— Containment domains: hierarchical model that can be tailored t o application
needs

Are there innovative ideas for integrating resilience and debugging into the
programming model?

— See Corvette project on reproducible computations

— Tools to detect races, and

Many application teams are beginning to explore task-based and data-
driven programming models. Are there common abstractions and key
features? How do they differ?
— Yes: Explict DAGs and implicit DAGs
— Tasks that run-to-completion without synchronization or communication vs
more general tasks (with various types of comm/synch allowed)
Are there lessons to be learned from other communities that we can apply?

— Many companies are building their own DSLs or even own general purpose
languages; DOE as a hold has the ability to do that with sufficient commitment

DEGAS Overview 29

