Argon ne°

NATIONAL LABORATORY

Future of MPI

Rajeev Thakur
Deputy Director
Mathematics and Computer Science Division
Argonne National Laboratory

DOE Programming Models and Environments Workshop
March 9, 2015

MPI Runs Successfully at Full Scale on all the
Largest Systems of Today

2
S Rajeev Thakur

MPI on the Largest Systems

= Number of cores in largest systems

Tianhe-2 (China) 3,120,000 cores (mostly Xeon Phi cores)
Sequoia (LLNL) 1,572,864 cores

Mira (ANL) 786,432 cores

Blue Waters 773,632 cores (plus some GPU cores)
K computer 705,024 cores

Julich BG/Q 458,752 cores

Titan (ORNL) 299,008 cores (plus GPU cores)

= Applications are running at full scale using either

— Al MPI, or increasingly,
— MPI + X hybrid

e X =threads (usually OpenMP) for regular cores
e X =CUDA, OpenACC for GPU cores

Rajeev Thakur

Application Examples

= HACC Cosmology Code from Argonne (Pl: Salman Habib)
— 14 PFlops/s (70% of peak) on Sequoia
— 16 MPI ranks * 4 OpenMP threads per rank on each node
e Matches h/w arch: 16 cores per node with 4 h/w threads each

— ~ 6.3 million way concurrency: 1,572,864 MPI ranks * 4
threads/rank

= Cardioid Cardiac Modeling Code (IBM and LLNL)
— 12 PFlops/s on Sequoia
— 1 MPI rank and 64 threads per node

— OpenMP for thread creation only; other thread stuff uses
custom code

— Performance-critical communication done directly with
IBM’s SPI low-level layer; other communication with MPI

S Rajeev Thakur

Other Examples

= ROSS parallel discrete-event simulator (Chris Carothers, RPI)
— Uses MPI-only, no threads

— Ran on ~2 million cores of Sequoia and Vulcan systems combined
e 1,966,080 cores * 4 MPI ranks/core = 7,864,320 MPI ranks

— Achieved the highest event rate ever reported (504 billion events/sec) on
PHOLD benchmark

= 100 million MPI processes using FG-MPI
— Fine-Grain MPI: Prof. Alan Wagner, Univ. of British Columbia

— An MPICH derivative that implements MPI processes as coroutines rather than
regular OS processes

— Ran 100 million MPI ranks on 6,480 processor cores of a cluster

=> Applications are flexibly choosing the number of MPI processes and
threads as suits their application and architecture, and running at full scale

Rajeev Thakur

All benchmarks for the DOE
CORAL procurement

(2017/18) use MPI or MPI+X
https://asc.linl.eov/CORAL-
benchmarks/

=> The application workload
on the CORAL systems is
expected to be largely MPI
or MPI + X

=> MPI implementations will
need to scale and run
efficiently on these systems

Paralielism Language
Priority
Scalable Sclence Banchmarks |, OpenMP/
MP Pthroads ortran | Python [+ C++
LSMS TR X x X x F
aBsox TR X x x <
HACC TR X x x <
Nekbcre TR X X X <
i Paralielism Language
Throughput Benchmarks Y
Lewvel MP g:pm.":: ortran |Python | C C++
CArM-SE TR X x X X A
UNMT2013 TR X x X X x x]
AMG2012 TR X x X £
MCEs TR x x x L)
QMCPACK TR.2 X x X x A
NANMD TR.2 X x x <
LLAESH TR.2 X x x]
SNAFP TR.2 X x X [4
miniFE TR.2 X x x]
Paralielism Language
Data-Centric Priority -
Sonchmarks Lewel P PO‘I:;:MP‘ ortran |Python | © Gt
Graph 500 TR x X <
Integer Sort TR X X X F
Hash TR X X X F
SPECINM200E “peak™ TR.2 X X x <
Paralielism Language
Skeleton Priority
Benchmarks Level ~el g""m"r:-' ortran |®ython | © | C++
cLOME TR x X A
10R TR X X a
CORAL M&1 bonchmarks TR X X <
Memory benchmarks -
STREAM | STRIDE s * * »
LCALS TR x x]
namic TR-2 x x x £
HACC 10 TR.2 X x £
FTQ TR.2 x ¥
XSBench {mini OperdiC) TR.2 x x A
MInMADONESS TR.2 x x x \

Exascale Architectures and their
Implications for MPI

Rajeev Thakur

Reference: CAL Report

Abstract Machine Models and Proxy
Architectures for Exascale Computing

Rev 1.1

J.A. Ang', R.F. Barrett', R.E. Benner', D. Burke?,
C. Chan?, D. Donofrio?, S.D. Hammond®,

K.S. Hemmert!, S.M. Kelly!, H. Le!, V.J. Leung?,
D.R. Resnick!, A.F. Rodrigues’,

J. Shalf?, D. Stark', D. Unat?, N.J. Wright®

C =]

ARCHITECTURE - |
0 Aoty Sandia National Laboratories, NM*

S Lawrence Berkeley National Laboratory, CA?

May, 16 2014

Available from http://www.cal-design.org/publications/publications2

Rajeev Thakur

Node Architecture Types

Network-on-Chip

—

Homogeneous Many-core

Network-on-Chip

Integrated CPU & Accelerators

Network-on-Chip

Heterogeneous Multicore

Network-on-Chip

J

Network

Memory

J

Memory

€

Chip Boundary

Multicore CPU with Discrete Accelerators

Rajeev Thakur

Custom

System
Interconnect

Designh Parameters

Processor GFlops/s per
Cores Proc Core Cores | per Node | per Node | Count
Homogeneous M.C. Optl 64 62,500
Homogeneous M.C. Opt2 64 250 -- -- 16 62,500
Discrete Acc. Optl 32 250 0O(1000) 4 16C+2A | 55,000
Discrete Acc. Opt2 128 64 0(1000) 16 8C+16A | 41,000
Integrated Acc. Optl 32 64 0O(1000) Integrated 30 33,000
Integrated Acc. Opt2 128 16 O(1000) Integrated 30 33,000
Heterogeneous M.C. Optl 16 /192 250 -- -- 16 62,500
Heterogeneous M.C. Opt2 | 32 /128 64 -- -- 16 62,500
Concept Optl 128 50 128 Integrated 6 125,000)
Concept Opt2 128 64 128 Integrated 8 125, OOO !

Rajeev Thakur

Source: CAL Report

10

Cores Per Node and Total Number of Nodes

= For design purposes, let’s use the maximum numbers of cores per node
and total number of nodes from previous slide, and assume 8 hardware
threads per core

Total number of nodes 125,000
Processor cores per node 256
Hardware threads per core 8
Hardware threads per node 2048
Total concurrency 256 million

Rajeev Thakur

a\\=-;g

Implications for MPI

Rajeev Thakur

12

Main Differences from Today’s Largest Systems
(for MPI)

Total number of nodes 0(125,000) => 1-4x
Hardware threads per node 0(2048) => 32-64x
Total concurrency 0O(256 million) => 40-120x

13
Rajeev Thakur

For the Total Number of Nodes

= 125,000 nodes is not a problem

— Sequoia already has 98,304 nodes

— Sequoia and Vulcan combined together have 122,880 nodes and have been
run as a single system (see slide 5)

= Scaling the number of nodes requires scaling in the distributed memory
sense.

— Better, scalable collectives
— Scalable data structures

— Efficient RMA

— Resilience

14
Rajeev Thakur

For the 32-64x Number of Hardware Threads/Node

Needs MPI+X hybrid or even MPI+X+Y
— Applications are already realizing this

X/Y can be any of OpenMP, Pthreads, OpenACC, CUDA, ...

X can also be MPI as some people have recognized
— MPI-3 has added support for shared-memory programming

— See “MPI+MPI: A New, Hybrid Approach to Parallel Programming with MPI
Plus Shared Memory Computing,” Hoefler et al., Computing, 2013

Needs better support from MPI for hybrid programming

— Such as the “endpoints” proposal being discussed in the MPI Forum
(see slide 17)

15
S Rajeev Thakur

For the 40-120x Total Concurrency

It should be considered as two sub-problems and solved accordingly
— How many MPI processes
— How many threads per MPI process
= For example, 256 million total concurrency could be implemented as
— 16 million MPI processes and 16 threads per process, or
— 4 million MPI processes and 64 threads per process

= Both cases are manageable by

— Improving MPIl implementations to use memory scalably (memory-efficient
data structures)

— Using MPI-3 shared-memory constructs and the new endpoints proposal for
efficient hybrid programming

— For a particular application, picking the best performing combination of
(n x m), where n = number of MPI processes, m = threads per process

= The new fault tolerance proposal in MPI will help support the increased
need for resilience (see slide 18)

16
Rajeev Thakur

Better Hybrid Programming: Extending MPI to Support
Multiple Endpoints Per Process

= |n MPI today, each process has a single communication endpoint (rank in
MPI_COMM_WORLD)

= Multiple threads of a process communicate through that single endpoint,
requiring the implementation to use locks etc., which are expensive

= MPI Forum is discussing a proposal (for MPI-4) that allows a process to
have multiple endpoints

= Threads within a process can attach to different endpoints and
communicate through those endpoints as if they are separate ranks

= The MPI implementation can avoid using locks if each thread
communicates on a separate endpoint

= This allows the MPI standard to support “MPI + X” more efficiently
without specifying what X is

17
Rajeev Thakur

Improved Support for Fault Tolerance

MPI always had support for error handlers and allows implementations
to return an error code and remain alive

MPI Forum working on additional support for MPI-4

Current proposal handles fail-stop process failures (not silent data

corruption or Byzantine failures)

= |f a communication operation fails because the other process has failed, the function
returns error code MPI_ERR_PROC_FAILED

= User can call MPI_Comm_shrink to create a new communicator that excludes failed
processes

= Collective communication can be performed on the new communicator
= Lots of other details in the proposal...

18
Rajeev Thakur

MPI is not BSP

= Some applications follow a BSP model and use MPI for communication

= But there are other applications that don’t follow a BSP model and still use

MPI

Examples
= GFMC code, part of NUCLEI SciDAC-3 project

Uses a completely task-based, fully asynchronous programming model
provided by the ADLB library, which is implemented on top of MPI

Distributed, global pool of tasks

Processes create work and (asynchronously) add it to the pool
e Tasks have types, priorities

Other processes get work asynchronously from the pool
No global synchronizations
Has efficiently used 250,000 MPI ranks on Mira, Argonne’s Blue Gene/Q

19
Rajeev Thakur

Another non-BSP use of MPI

PaRSEC Framework from UTK (Bosilca, Dongarra, et al)
Generic framework for task-based programming on
distributed many-core heterogeneous architectures

Applications expressed as DAGs of tasks with edges
representing data dependencies

Entire DPLASMA dense linear algebra library
implemented on top of PaRSEC

— Linear system solvers, least squares, eigen value,
level-3 BLAS, etc.

PaRSEC uses MPI for communication

Rajeev Thakur

Lower is better

MPI-3 RMA can be implemented efficiently

= “Enabling Highly-Scalable Remote Memory Access Programming with
MPI-3 One Sided” by Robert Gerstenberger, Maciej Besta, Torsten Hoefler
(SC13 Best Paper Award)

= Theyimplemented complete MPI-3 RMA for Cray Gemini (XK5, XE6) and
Aries (XC30) systems on top of lowest-level Cray APIs

= Achieved better latency, bandwidth, message rate, and application
performance than Cray’s UPC and Cray’s Fortran Coarrays

- DMAPP proto-|Transport Layer
>0 ® % 4 colchange |[*FONMPIMPI-3.0
_ ’ . * B AN o ACray UPC
100 4- o 81 000- e Y —y / W Cray MPI-2.2
| @ w4 +Cray MPI-1
KB - — m o o - ‘- °® ’Cfay CAF
LA
2'9 f f f | ot 8 ‘ *-_u
| | 4 j:: 5 A U
A 19— —o—9 & V| € Tk
= 8 16 32 64 . Q| 24100 W
) u | # QL s o
g 'Y 7 = o 25%—%—+— .
3 oA <| & 2.0-
o fe o o]l o o/ ; a o0 -
B= = mla= - « oY [Transport Layer T 59,010 1.5
A A Al ? Y \ © FOMPI MPI-3.0 b4 A e 'S & o
——H+ 4 Cray UPC b4 1.0 &
P DMAPP 'gfay m;:—zz g é 1‘-é 302 6‘4 n
e —Cra -1
v 1 *—o—0—@ ® protocol| Cra;); CAF .
| ' | change — I 0.001- . . | . |
8 64 512 4096 32768 262144 ’ 8 64 512 4098 32768 262144
Size [Bytes] Message Size [Bytes]
(a) Latency inter-node Put (b) Message Rate inter-node

21
Rajeev Thakur

Application Performance with Tuned MPI-3 RMA

/} 100.000-
Transport Layer
:EOMI:’IP%PI—S.O
ray
QL) h2 » Cray MPI—-1 -~
o
| 8 10.000- g%
|2 g
Qo 8 -
n|l » o N -
o — = - x - - =
| 8 1.000- 2 — p
v| E -
< 5 -
20 =
T 0.100- intra-node & inter-node
-
0.025-

32 128 512 2048 8182 32768

2 8
Number of Processes

(a) Inserts per second for inserting 16k el-

ements per process including synchroniza-

tion.
Distributed Hash Table
o\o
A Transport Layer 6\'? x
1600- |® FOMPI MPI-3.0 K
4. Cray UPC o
1 __ = Cray MPI1-1)
g g_ 0-" a
o .
| = é\° A T
o | €. soo- o A =
V|l s o\
c § 400 &° ‘\9'."' -
Rl = '1:5'2 —X
> :
I e T
=
200 554 65536

4086 16384
Number of Processes
(c) 3D FFT Performance. The annotations
represent the improvement of FOMPI over

MPI-1.
3D FFT

100000-
Transport Layer P
® FOMPI MPI-3.0 -

4 LIioNBC i t A
. Al i
—ora uce__scatier
O 10000- + Cray Alltoall -
B LK
| = -
= g
o) - A ¥
V| E 1000- -
— -
O o ! e —% &
2 =
8 100- P
v 25 3 32 128 i 2048 81s2 32768
Number of Processes

(b) Time to perform one dynamic sparse

data exchange (DSDE)

with 6 random

neighbors

Lower is better

Gerstenberger, Besta, Hoefler (SC13)

Dynamic Sparse Data Exchange

8001 Transport Layer
& © FOMP| MPI-3.0
— 4. Cray UPC
g = Cray MPI-1
=
S400
K]
[=%
E
o
(&)
5200
« o
g o\e
g - A
< c on\o— _‘;;,\o >
o\° K
v e e
4k 8k 16k 32k 64k 128k 256k 512k

Number of Processes
Figure 8: MILC: Full application execution time. The an-

notations represent the improvement of FOMPI and UPC
over MPI-1.

MILC

22

MPI RMA is Carefully and Precisely Specified

= To work on both cache-coherent and non-cache-coherent systems

— Even though there aren’t many non-cache-coherent systems, it is designed
with the future in mind

= There even exists a formal model for MPI-3 RMA that can be used by tools
and compilers for optimization, verification, etc.

— See “Remote Memory Access Programming in MPI-3” by Hoefler, Dinan,
Thakur, Barrett, Balaji, Gropp, Underwood. To appear in ACM TOPC, 2015.

— http://htor.inf.ethz.ch/publications/index.php?pub=201

23
Rajeev Thakur

What’s New in MPI-3

= Many enhancements for scalability, such as distributed graph topologies,
support for symmetric memory allocation in RMA, nonblocking collectives
= Major improvements to one-sided communication, including
— Atomic operations, such as compare-and-swap and fetch-and-add
— New memory model with simplified consistency semantics
— Support for allocating and accessing shared memory within a node
= Nonblocking collectives
— MPI_lbcast, MPI_lbarrier, MPI_Ireduce, and all other collectives
= Neighborhood collectives (and their nonblocking versions)

— Communication among nearest neighbors (e.g., stencil) can be expressed as a
collective communication

= Extensive interface for tools to portably access performance variables, or
set control variables, in an MPl implementation

= Bindings for Fortran 2008
= Many other miscellaneous items...

24
Rajeev Thakur

MPI-3 Implementations are already available

Open Cray | Tianhe Intel IBM BG/Q IBM PE IBM SGl Fujitsu | MS

MPICH | MVAPICH | ‘mp1 | mPI | MPI | MPI | MPIT | MPICH? | Platform | MPI | MPI | MPI

NB collectives ;/././;/;/t/t/t/t/t/t/*

Neighborhood : : : : : : : :) : : o
collectives v v AN AN A v ¢/ Q315 ¢ Q215

RMA v vV vV iV vV VvV vV vV @1 v Qi
Shared : : ‘ “Me
memoy | Y OV VYOV VYIL Y Y BE VsV

Tools Interface v V4 V4 (V4 (V4 (V4 v (V4 Q3 ‘15 (V4 Q215 : *
Non-collective : : : . p
commereate | Y 0V VoV oV VY LY Bwivoen
FO8 Bindings v vV ViV vV Q215 v Q?‘15 : Q315 vV Q5

New : : : : . .

patatypes | V0V ViV VI VI Y Y BBy oeBw "
Large Counts VA v v v v v v v © Q315 v Q2 ‘15 *
Matched ‘
Probe (V4 (V4 (V4 v (V4 (V4 (V4 (4 Q3 ‘15 (4 (4 *

Release dates are estimates and are subject to change at any time.
Empty cells indicate no publicly announced plan to implement/support that feature.

1 No MPIL_T variables exposed * Under development

Platform-specific restrictions might apply for all supported features

Rajeev Thakur 25

MPI is an Evolving Standard

=> |f some feature is missing, it can be added.

MPI Forum is active and is working on various new features that will
be useful for exascale

The Forum meets about four times a year
— March 2-5, 2015 (Portland)
— June 1-4, 2015 (Chicago)
— Sept 24-26, 2015 (Bordeaux, co-located with EuroMPI)
— Dec 7-10, 2015 (San Jose)
Anyone can participate
— All meetings, working groups, working drafts, telecons are fully open
Martin Schulz (LLNL) is the chair of the MPI Forum
MPI 3.1 should be out by June this year

Rajeev Thakur

26

Summary

= MPI has succeeded for many reasons. If | had to pick one reason:

— It has enabled many highly tuned libraries (e.g., PETSc, Trilinos, FFTW,
Chombo) that make life easier for application developers

— “Productivity” comes from using these libraries

= MPI community needs to better understand the needs of
advanced higher-level programming models so that MPI can be
used as a basis for their implementation

= MPI can scale to exascale systems

— But work is needed in both the MPI specification and in MPI
implementations

Rajeev Thakur

27

