
Click to edit Master title style

John Shalf, Jim Ang, & the CAL team

Implications of Hardware Trends on
Programming Models

Programming Models & Environments
March 9, 2015

h"p://www.cal+design.org/publica6ons7

2

Abstract Machine Models and Proxy
Architectures for Exascale Computing

Rev 1.1

J.A. Ang1, R.F. Barrett1, R.E. Benner1, D. Burke2,
C. Chan2, D. Donofrio2, S.D. Hammond1,

K.S. Hemmert1, S.M. Kelly1, H. Le1, V.J. Leung1,
D.R. Resnick1, A.F. Rodrigues1,

J. Shalf2, D. Stark1, D. Unat2, N.J. Wright2

Sandia National Laboratories, NM1

Lawrence Berkeley National Laboratory, CA2

May, 16 2014

2 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

E X A S C A L E
C O M P U T I N G

Exascale Computing Trends:
Adjusting to the “New Normal”
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time
to take stock and look forward in terms of scaling models and their implications for
future systems.

W e now have 20 years of data under
our belt as to the performance of
supercomputers against at least a
single floating-point benchmark

from dense linear algebra. Until approximately
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for
translating complex applications into reasonable
parallel programs.

In 2004, however, a confluence of events
changed forever the architectural landscape
that underpinned MPI. Figure 1 summarizes
the effects of these changes in terms of the
year-over-year compound annual growth rate
(CAGR) of several key system characteristics.
This data, taken from an average of the top
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance,
in flops (floating point operations) per second,
has grown consistently at about 1.9= per year.
Before 2004, this growth came from a modest
increase in the number of cores, coupled with

substantial (50 percent or better per year) in
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per
year skyrocketed, while the average core clock
growth disappeared, and memory per core even
declined.

The first half of this article delves into the
underlying reasons for these changes and what
they mean to system architectures. The second
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for
programming and algorithm design in future
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance
and memory chip density increase exponen-
tially over time, the real statement is that a
transistor’s key linear dimensions (its feature
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk
(meaning that more transistors can be placed
on a die), and its inherent delay (due largely
to the capacitance of its now smaller gate) has
declined. The dimensional shrinkage has also
been applied to the width of the wiring that

1521-9615/13/$31.00 © 2013 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

Peter Kogge
University of Notre Dame
John Shalf
Lawrence Berkeley National Laboratory

CISE-15-6-Shalf.indd 2 08/11/13 7:00 PM

2 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

E X A S C A L E
C O M P U T I N G

Exascale Computing Trends:
Adjusting to the “New Normal”
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time
to take stock and look forward in terms of scaling models and their implications for
future systems.

W e now have 20 years of data under
our belt as to the performance of
supercomputers against at least a
single floating-point benchmark

from dense linear algebra. Until approximately
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for
translating complex applications into reasonable
parallel programs.

In 2004, however, a confluence of events
changed forever the architectural landscape
that underpinned MPI. Figure 1 summarizes
the effects of these changes in terms of the
year-over-year compound annual growth rate
(CAGR) of several key system characteristics.
This data, taken from an average of the top
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance,
in flops (floating point operations) per second,
has grown consistently at about 1.9= per year.
Before 2004, this growth came from a modest
increase in the number of cores, coupled with

substantial (50 percent or better per year) in
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per
year skyrocketed, while the average core clock
growth disappeared, and memory per core even
declined.

The first half of this article delves into the
underlying reasons for these changes and what
they mean to system architectures. The second
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for
programming and algorithm design in future
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance
and memory chip density increase exponen-
tially over time, the real statement is that a
transistor’s key linear dimensions (its feature
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk
(meaning that more transistors can be placed
on a die), and its inherent delay (due largely
to the capacitance of its now smaller gate) has
declined. The dimensional shrinkage has also
been applied to the width of the wiring that

1521-9615/13/$31.00 © 2013 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

Peter Kogge
University of Notre Dame
John Shalf
Lawrence Berkeley National Laboratory

CISE-15-6-Shalf.indd 2 08/11/13 7:00 PM

CISE%CSE%2013%Ar,cle%

Original Article Title;
How I learned to Stop Worrying and Love Exascale

1/23/2013% Computa,onal%Research%Division%|%Lawrence%Berkeley%Na,onal%Laboratory%|%Department%of%Energy% 4

Defini6on7from7ASCR7Programming7Models7Report7(2009)7
!

Minimize'the'number'of'lines'of'code'that'need'to'
change'to're5tune'when'moving'between'different'
vendor'architectures'of'the'same'genera9on'and'to'
future'genera9ons'of'the'same'vendor'architecture'
7
The%fact%that%we%have%to%completely%rewrite%our%codes%to%fit%future%

machine%constraints%says%more%about%our%programming%environment%

than%about%the%machines%%

%

(the!programming!env.!targets!the!wrong!abstrac4ons)!

What7is7Performance7Portability?7

5

6

Better Abstractions for programming the
underlying machine architecture

How do we build up these abstractions?

Start with an abstract machine model (AMM)

How do you GET Performance Portability?

The Programming Model is a Reflection of
the Underlying Abstract Machine Model

•  Equal cost SMP/PRAM model
–  No notion of non-local access
–  int [nx][ny][nz];

•  Cluster: Distributed memory model
–  CSP: Communicating Sequential Processes
–  No unified memory
–  int [localNX][localNY][localNZ];

•  2-level (CTA in Martha Kim Taxonomy)
–  Candidate Type Architecture (CTA)
–  MPI+X model (for all practical purposes)

•  Whats Next?

SMP

P P P P P

P P P P P

MPI Distributed Memory

Martha%Kim,%Columbia%U.%Tech%Report%“Abstract%Machine%Models%and%Scaling%Theory”%

h6p://www.cs.columbia.edu/~martha/courses/4130/au13/pdfs/scalingBtheory.pdf!

%

SMP%

P P P

SMP%

P P P

SMP%

P P P

SMP%

P P P

25Level'MPI+X'is'dominant,'but'insufficient!'

Parameterized7Machine7Model7
(what'do'we'need'to'reason'about'when'designing'a'new'code?)'

Cores7
• How%Many%

• Heterogeneous%
• SIMD%Width%

Network7on7Chip7(NoC)7
• Are%they%equidistant%or%%
• Constrained%Topology%(2D)!

On+Chip7Memory7Hierarchy7
• Automa,c%or%Scratchpad?%

• Memory%coherency%method?%

Node7Topology7
• NUMA%or%Flat?%

• Topology%may%be%important%

• Or%perhaps%just%distance%
Memory7

• Nonvola,le%/%mul,\,ered?%

• Intelligence%in%memory%(or%not)%

Fault7Model7for7Node7
• %FIT%rates,%Kinds%of%faults%
• %Granularity%of%faults/recovery%

Interconnect7
• Bandwidth/Latency/Overhead%
• Topology%

Primi6ves7for7data7movement/sync7
• Global%Address%Space%or%messaging?%

• Synchroniza,on%primi,ves/Fences%

For7each7parameterized7machine7a"ribute,7can77
•  Ignore7it:7If'ignoring'it'has'no'serious'power/performance'consequences'

•  Expose7it7(unvirtualize):'If'there'is'not'a'clear'automated'way'of'make'decisions'
•  Must%involve%the%human/programmer%in%the%process%(make'pmodel'more'expressive)'

•  Direc,ves%to%control%data%movement%or%layout%(for%example)%

•  Abstract7it7(virtualize):'If'it'is'well'enough'understood'to'support'an'automated'

mechanism'to'op9mize'layout'or'schedule'

–  This%makes%programmers%life%easier%(one%less%thing%to%worry%about)%

Want7model7to7be7as7simple7as7possible,7but7not7neglect7any7aspects7of7the7
machine7that7are7important7for7performance7

Abstract7Machine7Model77
(what'do'we'need'to'reason'about'when'designing'a'new'code?)7

Exascale7Strawman7Arch7
Based7on7input7from7DOE7Fast7Forward7and7Design7
Forward7Projects7

•  Lets review where things are going in exascale concept designs

•  Physics7(technological7constraints)7
–  Cost%of%data%movement%

–  Capacity%of%DRAM%cells%

–  Clock%frequencies%(constrained%by%end%of%Dennard%scaling)%
–  Speed%of%Light%
–  Mel,ng%point%of%silicon%

•  Computer7Architecture7(design7of7the7machine)7
–  Power%management%

–  ISA%/%Mul,threading%

–  SIMD%widths%

“Computer%architecture,%like%other%architecture,%is%the%art%of%determining%the%

needs%of%the%user%of%a%structure%and%then%designing%to%meet%those%needs%as%

effec,vely%as%possible%within%economic%and%technological%constraints.”%–!Fred!
Brooks!(IBM,!1962)!

!

Have'converted'many'former'“power”'problems'into'“cost”'problems'

Computer7Architecture7vs.7Physics7
Important!not!conflate!one!with!the!other!

11

Emerging7Technology7Constraints7
(we!didn’t!design!our!codes!with!these!in!mind)!

12

Old Constraints

•  Peak clock frequency as primary
limiter for performance improvement

•  Cost: FLOPs are biggest cost for
system: optimize for compute

•  Concurrency: Modest growth of
parallelism by adding nodes

•  Memory scaling: maintain byte per
flop capacity and bandwidth

•  Locality: MPI+X model (uniform costs
within node & between nodes)

•  Uniformity: Assume uniform system
performance

•  Reliability: It’s the hardware’s
problem

New Constraints

•  Power is primary design constraint for
future HPC system design

•  Cost: Data movement dominates:
optimize to minimize data movement

•  Concurrency: Exponential growth of
parallelism within chips

•  Memory Scaling: Compute growing 2x
faster than capacity or bandwidth

•  Locality: must reason about data
locality and possibly topology

•  Heterogeneity: Architectural and
performance non-uniformity increase

•  Reliability: Cannot count on hardware
protection alone

Fundamentally'breaks'our'current'programming'paradigm'and'compu9ng'ecosystem'
%

This%is%Physics/Technology%Constraints%

%

“Architecture”%is%the%industry%reac,on%

to%those%constraints%%

•  Constraint:7Can’t7scale7the7clock7frequency7
–  Arch'Response:%Only%get%performance%from%explicit%parallelism%

–  Have%to%include%lightweight%cores%for%max%efficiency%

•  Can’t7get7both7capacity7and7bandwidth7in7one7memory7technology7
–  Split%of%memory%into%fast\low\capacity%and%slow\high\capacity%

–  NVRAM%in%this%context%is%only%there%because%low%cost/bit%

•  Communica6on7overheads7hurt7strong7scaling7
–  Integrate%NIC%on%board%the%processor%chip%
–  Support%light(er)weight%messaging%protocols%(fewer%steps)%

•  A7challenge7to7scale7up7parallel7POSIX7disk+based7filesystem7
–  Burst\buffer%hardware%is%here%to%stay%(sodware%for%it%unclear)%
–  Whether%it%is%on%node%or%in%I/O%nodes%(its%slow%enough%that%it%looks%the%

same)%

•  Performance7heterogeneity7
–  Architecture!response?!(research!ques4on)!

Enduring7Architecture7Trends7

13

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07
1/
1/
19

92

1/
1/
19

96

1/
1/
20

00

1/
1/
20

04

1/
1/
20

08

1/
1/
20

12

1/
1/
20

16

1/
1/
20

20

1/
1/
20

24

En
er
gy

pe
rF

lo
p
(p
J)

Heavyweight Heavyweight Scaled Heavyweight Constant

Lightweight Lightweight Scaled Lightweight Constant

Heterogeneous Hetergeneous Scaled Historical

CMOS Projection Hi Perf CMOS Projection Low Power UHPC Goal

1/23/

2013%

14

Hybrid7Architectures:7
Moving!from!sideBshow!to!necessity!

Lightweight%cores%or%

Hybrid%is%the%only%

approach%that%crosses%

the%exascale%finish%line%

Can7con6nue7with7
conven6onal7x867
architectures7if7you7

want.7

We7have7go"en7to7150PF7
by7accep6ng7lightweight7

cores7(Not7by7arch7
breakthrough!!!)77What7
trades7will7are7you7willing7
to7make7to7get7next710x77

1"

10"

100"

1000"

10000"

DP
"FL
OP
"

Re
gis
ter
"

1m
m"
on
3ch
ip"

5m
m"
on
3ch
ip"

15
mm

"on
3ch
ip"

Off
3ch
ip/
DR
AM

"

loc
al"
int
erc
on
ne
ct"

Cro
ss"
sys
tem

"

2008"(45nm)"

2018"(11nm)"

Pi
co
jo
ul
es
*P
er
*6
4b

it*
op

er
a2

on
*

Cost of Data Movement Increasing Relative to Ops

FLOPs%will%cost%less%than%

on\chip%data%movement!%

(NUMA)%%

F
L
O
P
s
%

Data Locality Management

Vertical Locality Management
(spatio-temporal optimization)

Horizontal Locality Management
(topology optimization)

16%

Coherence%

Domains%

Can7Get7Capacity7OR7Bandwidth7
But7Cannot7Get7Both7in7the7Same7Technology7

17
1/23/

2013%

Bandwidth\Capacity. 16.GB. 32.GB. 64.GB. 128.GB. 256.GB. 512.GB. 1.TB.
4.TB/s.
2.TB/s. Stack/PNM.
1.TB/s. .. Interposer..

512.GB/s. HMC.organic.
256.GB/s. DIMM..
128.GB/s. NVRAM..

Cost (increases for higher capacity and cost/bit increases with bandwidth)

P
o
w
e
r

Old7Paradigm7
•  One%kind%of%memory%(JEDEC/DDRx)%

•  ~1%byte%per%flop%memory%capacity%

•  ~1%byte%per%flop%bandwidth%

New7Paradigm7
•  DDR4:%~1%byte%per%flop%capacity%with%

%<%0.01%bytes/flop%BW%

•  Stacked7Memory:%~1%byte%per%flop%bandwidth%
<%0.01%bytes/flop%capacity%

•  NVRAM:%More%capacity,%but%consumes%more%

Energy%for%writes%than%for%reads.%

%

Families7of7AMMs7

18
1/23/

2013%

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Core Core

Network-on-Chip

...

...

...
M
em

or
y

...

Acc.

...

M
em

or
y

M
em

or
y

Acc.

Heterogeneous%

Manycore%

Homogeneous%

Manycore%

Heterogeneous%

Accelerator%
Akached%Accelerator%

Families7of7AMMs7

19
1/23/

2013%

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Core Core

Network-on-Chip

...

...

...
M
em

or
y

...

Acc.

...

M
em

or
y

M
em

or
y

Acc.

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Families7of7AMMs7

20
1/23/

2013%

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Core Core

Network-on-Chip

...

...

...
M
em

or
y

...

Acc.

...

M
em

or
y

M
em

or
y

Acc.

1/23/2013%

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Differen6a6on7between7GPU7and7
CPU+derived7throughput7cores7
•  ISA%
•  Security/Protec,on%
•  SIMD%Width%%

•  Thread%Divergence%
•  Cache%Coherence%
•  Kernel%Launch%(accel%model)%

7

(compiler!can!abstract!ISA)!

Are7these7the7only7possible7AMMs?7
!

NO:!this!is!just!a!reflec4on!of!what!is!seen!developing!in!industry.!!

Specializa4on!&!other!architectures!possible.!!See!Sandia!XGC!Project!

21

Core Core

Core Core

Network-on-Chip

...

...
...

M
em

or
y

1/23/2013%

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Chip Boundary

Network

Core Acc.

MemMov MemMov

Network
Network-
on-Chip M

em
or

y

System
InterconnectNIC

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

22

Abstract7Machine7Model7

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

23

Exascale7Node7Schema6c7Model7
(also'for'all'pre5exascale'systems)7

Proxy7Machine7Model7
777 Hopper7 exaNode17 exaNode27 exaPIM7

Memory%BW% TB/s/node%(chip)% 0.05% 1% 4% 1%

Memory%Size% GB/node%(chip)% 32% 256% 32% 256%(16)%

Flops% TF/node%(chip)% 0.03% 10% 10% 0.7%

#%of%Cores% Cores/chip% 6% 1024% 1024% 64%

#%of%Chips% Chips/node% 4% 1% 1% 16%

Cache%(last%L)% $/core%(KB)% 1024% 32\256% 32\256% 0%

Cache%L1% $/core%(KB)% 64% 32\64% 32\64% 0%

NIC%BW% GB/s% 1% 100% 400% 25%

NIC%Latency% microseconds% 1% 0.4% 0.02% 0.02%

Registers% KB/chip%

•  exaNode1%and%2%are%many%core%architectures%

•  exaNode1%uses%commodity%NIC%and%memory%technology%

•  exaNode2%uses%custom%on\board%NIC%and%faster%memory%technology%%%

•  exaPIM:%Processing%Near%Memory,%cache\less%architecture%

Proxy7Machines7w/7Proxy7Apps7
Future

Applications

Future
Architectures

System SW

Proxy Apps

HPC Arch.
Simulators

Adv. Arch.
Testbeds

77System7SW777

!  Proxy7Applica6ons7(Mantevo):7
!  Applica,on%source%for%architecture\centric%

op,miza,on%and%analysis%

!  hkp://mantevo.org%

!  Abstract7Machine7Model7(AMM)7Defini6ons7and7
associated7Proxy7Architectures7
!  Supported%by%SC/ASCR%Computer%Architecture%Lab%

!  hkp://crd.lbl.gov/assets/pubs_presos/

CALAbstractMachineModelsv1.1.pdf%

Proxy Archs

!  HPC7Architectural7Analysis7Frameworks:77
!  hkp://www.cal\design.org/%

!  hkp://www.opensocfabric.org/%

!  hkp://SST\simulator.org%

!  ASC7Advanced7Architecture7Test7Beds:7
!  Evolving%examples%of%COTS%“state\of\the\art”%

!  hkp://www.sandia.gov/asc/computa,onal_systems/HAAPS.html%

25%

AMMs7vs.7Proxy7Machine7Models7

26

Chapter 5

Proxy Architectures for Exascale
Computing

Proxy architecture models (PAMs) were introduced as a codesign counterpart to proxy applications in the DOE
ASCAC report on the Top Ten Exascale Research Challenges [?]. This Computer Architecture Laboratory
(CAL) AMM document separates the PAMl concept into AMM and proxy architectures, but the intent is still
to facilitate codesign and communication.

In this section we identify approximate estimates for key parameters of interest to application developers.
Many of these parameters can be used in conjunction with the AMM models described previously to obtain
rough estimates of full node performance. These parameters are intended to support design-space exploration
and should not be used for parameter- or hardware- specific optimization as, at this point in the development of
Exascale architectures, the estimates may have considerable error. In particular, hardware vendors might not
implement every entry in the tables provided in future systems; for example, some future processors may not
include a Level-3 cache.

5.1 Design Parameters

The following list of parameters allows application developers and hardware architects to tune any AMMs to
their desire. The list is not exhaustive and will continue to grow as needed. Since this list is for all AMMs
presented in this document, not all parameters are expected to be applicable to every AMM. In fact, we expect
that for each AMM only a subset of this list of parameters will be used for architecture tuning. Likewise, not
all parameters are useful for application developers, such as bandwidth of each level of the cache structure.

Processor Gflop/s per NoC BW per Processor Accelerator Acc Memory Acc Count TFLOP/s per Node
Cores Proc Core Proc Core (GB/s) SIMD Vectors Cores BW (GB/s) per Node Node1 Count

(Units x Width)

Homogeneous M.C. Opt1 256 64 8 8x16 None None None 16 62,500
Homogeneous M.C. Opt2 64 250 64 2x16 None None None 16 62,500
Discrete Acc. Opt1 32 250 64 2x16 O(1000) O(1000) 4 16C + 2A 55,000
Discrete Acc. Opt2 128 64 8 8x16 O(1000) O(1000) 16 8C + 16A 41,000
Integrated Acc. Opt1 32 64 64 2x16 O(1000) O(1000) Integrated 30 33,000
Integrated Acc. Opt2 128 16 8 8x16 O(1000) O(1000) Integrated 30 33,000
Heterogeneous M.C. Opt1 16 / 192 250 64 / 8 8x16 / 2x8 None None None 16 62,500
Heterogeneous M.C. Opt2 32 / 128 64 64 / 8 8x16 / 2x8 None None None 16 62,500
Concept Opt1 128 50 8 12x1 128 O(1000) Integrated 6 125,000
Concept Opt2 128 64 8 12x1 128 O(1000) Integrated 8 125,000

Table 5.1: Opt1 and Opt1 represent possible proxy options for the abstract machine model. M.C: multi-core,
Acc: Accelerator, BW : bandwidth, Proc: processor, For models with accelerators and cores, C denotes to
FLOP/s from the CPU cores and A denotes to FLOP/s from Accelerators.

18

AMM7is7the7topology7and7schema6c7for7future7machines7
7
The7Proxy7Machine7Model7fills7that7in7with7speeds7and7feeds7
7

•  Lightweight cores not fast enough to process complex
protocol stacks at line rate
•  Simplify MPI or add thread match/dispatch extensions
•  Or use the memory address for endpoint matching (GAS)

•  Can no longer ignore locality (especially inside of node)
•  Its not just memory system NUMA issues anymore
•  On chip fabric is not infinitely fast (Topology as first class citizen)
•  Relaxed-relaxed consistency (or no guaranteed HW coherence)

•  New Memory Classes & memory management
•  NVRAM, Fast/low-capacity, Slow/high-capacity
•  How to annotate & manage data for different classes of memory

•  Asynchrony/Heterogeneity
•  New potential sources of performance heterogeneity
•  Is BSP up to the task?

Programming Model Challenges
(why is MPI+X not sufficient?)

27

Click to edit Master title style

What are the big challenges
for Future Programming Systems

Implications for Future
Programming Models

28

•  Cost to move a bit on copper wire:
•  Power = Bitrate * Length / cross-section area

•  Wire data capacity constant as feature size shrinks
•  Cost to move bit proportional to distance
•  Limits feasible off-chip BW with fixed pincount
•  Photonics reduces distance-dependence of bandwidth,

but 1% efficient laser sources impact overall efficiency
•  there is no magic bullet to solve this problem

The Problem with Wires:
Energy to move data proportional to distance

Copper requires to signal amplification
even for on-chip connections

Photonics requires no redrive
and passive switch little power

But laser power dominates

•  Mo6va6on7
–  Data%movement%cost%exceeds%compute%

–  Cost%on\chip%now%distance%dependent%
–  Complexity%of%enumera,ng%hundreds%

of%cores%(millions%of%MPI%ranks)%

•  Value7Proposi6on7
–  Reduce%cost%of%data%movement%

(simpler%compared%to%MPI%2\sided)%

–  Data%centric%computa,on%(compute%on%

data%where%it%is%located…%in\situ)%

–  Make%this%all%much%simpler%to%describe%

•  Implementa6ons/Existence7proofs7
–  UPC/UPC++:%%%

–  Co\Array%Fortran%/%CAF2:%

–  RAJA/Kokkos:%%NNSA%is%putng%majority%of%

its%investment%behind%this%path.%

Data7Centric7/7Global7Address7Space7

30

1"

10"

100"

1000"

10000"

DP
"FL
OP
"

Re
gis
ter
"

1m
m"
on
3ch
ip"

5m
m"
on
3ch
ip"

15
mm

"on
3ch
ip"

Off
3ch
ip/
DR
AM
"

loc
al"
int
erc
on
ne
ct"

Cro
ss"
sys
tem

"

2008"(45nm)"

2018"(11nm)"

Pi
co
jo
ul
es
*P
er
*6
4b

it*
op

er
a2

on
*

Latency
Optimized

Core
(Fat Cores)

Throughput Optimized Cores
(Thin Cores)

Massively Parallel,Simple

Core
Coherence

Domain

Towards7a7Data7Centric7Compu6ng7Model7

•  Old7Model7(OpenMP)7
–  Describe%how%to%parallelize%loop%itera,ons%
–  Parallel%“DO”%divides%loop%itera,ons%evenly%among%processors%

–  .%.%.%but%where%is%the%data%located?%%

•  New7Model7(Data+Centric)7also'in'big'data'
–  Describe%how%data%is%laid%out%in%memory%

–  Change%applies%to%ALL%Loop%statements%operate%data%

where%it%is%located%(in\situ)%

–  Similar%to%MapReduce,%but%need%more%sophis,cated%descrip,ons%of%

data%layout%for%scien,fic%codes%

forall_local_data(i=0;i<NX;i++;A)

C[j]+=A[j]*B[i][j]);

31

•  Current7languages7over+specify7data7layout7and7its7connec6on7to7the7
itera6on7space7Need7abstrac6on7to7separate7the7data7layout7from7the7
itera6on7space7(Compila6on7also7destroys7index/layout7informa6on7)7
–  Use7metadata7to7abstract7informa6on7about7the7data7layout7&7index7space7
–  Use7Lambda7Func6ons7to7abstract7the7itera6on7space7for7computa6on7

•  Enables7data7layout7or76ling7to7change,7but7solvers7remain7unchanged7!!!77

Tiling:7Abstrac6on7for7Memory7Layout7
CAF2,7UPC++,7Chapel,7TiDA,7Raja/Kokkos7

32

a)  Logical Tiles(CPU) b) Separated Tiles (GPU) c) Regional Tiles

cell tile

Separated tiles with halos

region box

Example7TiDA7Performance7for7SMC7Proxy7App7and7Geometric7
Mul6grid7(MiniGMG)7

•  Integrated7into7BoxLib7(produc6on7AMR7library)7for7tes6ng/demonstra6on7
•  Naïve7code7with7TiDA7outperforms7na6ve7OpenMP7code7and7matches7(or7

even7exceeds)7performance7of7manually7otpimized76ling7
•  TiDA7uses7HWLOC()7hardware7locality7mapping7library7to7!7

–  automate%op,mal%placement%of%data%,les%%

–  Automate%pinning%of%threadIDs%to%processors%on%mul,core%systems%

0"

2"

4"

6"

8"

10"

12"

14"

16"

6" 12" 18" 24"

Sp
ee
du

p&

#&of&Cores&

MiniMG&Speedup&over&1&Thread&(Hopper)&

TIDA,LOG"
TiDA,REG"
OMP"
OMP,Naïve"

0"

5"

10"

15"

20"

25"

6" 12" 18" 24"

Sp
ee
du

p&

#&of&Cores&

SMC&&Speedup&over&1&Thread&(Hopper)&

TiDA-LOG"

TiDA-SEP"

TiDA-REG"

OMP"

Manual"
Tiling"

DTEC:7Embedded7DSLs7
(another!approach)!

Math:
Operator to compute in place

Where is defined on a union of Boxes in a DIM-dimensional
rectangular lattice with mesh spacing h, and is the standard
2*DIM + 1 point discretization of the Laplacian.

Simple Code using DSL for Users to Write:
double f(double& x, int y){return pow(x,y);}

Stencil lapStencil;

 for (dir = 0; dir < DIM; dir++){

 Point pt = getUnitv(dir);

 lapStencil += Shift(pt) -2*Shift(pt*0) + Shift(-pt))/(h*h);

 };

void foo::operator(LevelData<RectGridArray<double>& a_phi){

 a_phi.exchange();

 Iterator it(a_phi);

 for (it.begin();it.ok();it++){

 RectGridArray<double>& phiPatch =a_phi[it()];

 phiPatch = f(.,5)@phiPatch;

 phiPatch = lapStencil(phiPatch) on  
 a_phi.getBox(dit());

 }

};

� := �h(�5)
�

�h

Generated%code%from%DSL%

Too%Complex%for%Users%to%Write%
%%%%(That%is%code%in%the%background)%

%

4th%order%stencil%computa,on%from%

CNS%Co\Design%Proxy\App%%

107Level7Sokware7Managed7Cache7
Code7generated7from7DSL7

Automa,cally%generated%code:%

•  500+%lines%of%op,mized%code%

•  10%levels%of%memory%hierarchy%

•  MPI%used%at%highest%level%

•  Op,mized%for%Many\Core%

•  9%levels%of%sodware%managed%

cache%memory%levels%

•  Op,mized%for%NUMA%architecture%

•  lowest%level%vectorized%

•  Developed%using%SNL%SST%Micro%

Exascale%Architecture%Simulator%

47Level7Hand7Wri"en77

Sokware7Managed7Cache7Example7

•  Trend:7increasing7localiza6on7of7data7movement7
–  More%NUMA%domains%(now%within%the%chip)%

–  Higher%cost%of%moving%off\chip%

–  On%Cori,%we%can%ignore%with%some%modest%cost%%

•  Observa6ons7
–  This%is%physics%(not%architecture),%so%hard%to%change%
–  NUMA%memory%locality%different%than%NUMA%on%chip%(both%worse)%

•  What7Apps7teams7should7think7about7
–  Need%to%think%about%how%you%can%express%your%algorithm%and%data%

layouts%in%a%way%that%maps%easily%to%a%2D%array%of%processor%elements%

within%a%chip.%

•  What7CS7teams7should7think7about7
–  How%can%we%provide%features%in%the%programming%environment%that%

automate%the%tedious%process%of%binding%data%&%work%to%specific%cores%

(pinning)%in%a%manner%that%is%constrained%by%topology%metadata%

Data7Locality7

35
Computa,onal%Research%Division%|%Lawrence%Berkeley%

Na,onal%Laboratory%|%Department%of%Energy%

•  Many Examples in library and DSL form
•  HTA: Hierarchical Tiled Arrays
•  TiDA: Tiling as a Durable Abstraction
•  RAJA & KOKKOS: C++ Template Metaprogram Lib (many other examples!!)

•  All arrived at similar underlying concepts
•  Lamba functions to relax loop nest order
•  Abstracts data physical layout from logical layout

•  When many different projects independently arrive at the same or
very similar solutions

•  Perhaps they have found a reasonably optimal solution
•  Its time to talk about standardization (MPI forum)

•  For Tiling Abstractions, see PADAL
 (Programming Abstractions for Data Locality)
 http://www.padalworkshop.org/

Data Locality Abstractions
(is it time for standardization?)

1/23/

2013%

Computa,onal%Research%Division%|%Lawrence%Berkeley%

Na,onal%Laboratory%|%Department%of%Energy%

36

37

Moving towards Global Address Space and
MPI3 RMA

Light(er)weight Messaging

•  Trend:
•  Network/NIC bandwidth scaling, but per-core performance NOT.
•  Simpler cores take longer to run MPI protocol stack (NOC ingress issues)

•  Challenge
•  Wimpy cores present challenge to current threads/MPI relationship

•  One rank per chip creates amdahl bottleneck
•  Adding ranks per chip creates challenge for strong scaling

•  Solutions
•  Lighter weight communication protocols (e.g. PGAS)
•  Side-cores (Thor or BG/Q MPI)
•  All processors as peers in communication (e.g. MPI thread multiple)
•  Direct message queues between all processors (hardware support)

•  Intel direct msg queues, AMD XTQ, NVIDIA malleable memory (can you use
these features?)

•  What applications teams should think about
•  What is your high-level abstractions for communication? (e.g. halo exchange)
•  Can it be extended to work with these different comm options? (PGAS, side-

core, direct message queues, all threads as peers)
•  Which path is most effective and most maintainable in the long term

•  CS teams: already deeply involved in this area

Communications

Communica6on7(MPI+OMP7vs.71+sided7RMA)7

i (unit stride) i (unit stride)

send
buffers

recv
buffer

box 2
(remote)

box 0
(local)

box 3
(remote)

1 3 2 4
box 1

(remote)

1

2

3

4 recv
buffer

i (unit stride) i (unit stride)

box 2
(remote)

box 0
(local)

box 3
(remote)

box 1
(remote)

1

1

• MPI 2-sided requires 4 steps to
communicate ghost zones with
neighbors for best performance*

• OpenMP has no mechanism to
handle multi-level memory
hierarchy

MPI+OpenMP7

• One-sided enables direct
boundary exchange in only 1 step
while delegating details to runtime

• Global Addroptimizes for memory
hierarchy with hierarchical teams,
locales and recursive array tiling

PGAS/GAS/MPI3rma7

*An alternative approach using MPI data types with fewer steps is possible but
its performance is much slower than the 4-step approach.

Yelick/Zheng:7LBNL7

40

Beyond Bulk Synchronous

•  Mo6va6on7
–  Many%sources%of%machine%performance%varia,on%(e.g.%power%

management,%failure%recovery,%conges,on….)%

–  Many%sources%of%algorithmic%varia,on%

–  Difficult%to%coordinate%1million%processors%to%do%the%same%thing%

simultaneously%(bulk%synchronous)%

•  Value7Proposi6on7
–  Describe%task%dependencies%and%have%the%computer%handle%the%

complex%scheduling%

–  Reduces%workload%on%user%to%manage%the%scheduling%(we%use%bulk%

sync%because%it%requires%less%thought…%)%

•  Implementa6ons7
–  OCR:%%Intel’s%open%community%run,me%(serves%mul,ple%impls.)%

–  HPX:%%Indiana/LSU%(Sterling),%slated%to%be%part%of%C++17%standard.%
–  Charm++:%%Pre\dates%MPI%%%%%%<%and%many%others%>%

Looking7Beyond7Bulk7Sync7

41

Performance7Heterogeneity7

42

•  Heterogeneous compute engines
(hybrid/GPU computing)

•  Fine grained power mgmt. makes
homogeneous cores look
heterogeneous
•  thermal throttling – no longer guarantee

deterministic clock rate
•  Nonuniformities in process technology

creates non-uniform operating
characteristics for cores on a CMP
•  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates

•  error correction is not instantaneous
•  And this will get WAY worse if we move towards

software-based resilience

1/23/

2013%

Bulk Synchronous Execution

Performance7Heterogeneity7

43

•  Heterogeneous compute engines
(hybrid/GPU computing)

•  Fine grained power mgmt. makes
homogeneous cores look
heterogeneous
•  thermal throttling – no longer guarantee

deterministic clock rate
•  Nonuniformities in process technology

creates non-uniform operating
characteristics for cores on a CMP
•  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates

•  error correction is not instantaneous
•  And this will get WAY worse if we move towards

software-based resilience

Bulk Synchronous Execution

Near7Threshold7Voltage7(NTV):7Shekhar!Borkar!(Intel)!
The!big!opportuni4es!for!energy!efficiency!require!codesign!!

44

•  Heterogeneous compute engines (hybrid/
GPU computing)

•  Fine grained power mgmt. makes
homogeneous cores look heterogeneous
•  thermal throttling – no longer guarantee deterministic

clock rate
•  Nonuniformities in process technology

creates non-uniform operating
characteristics for cores on a CMP
•  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates

•  error correction is not instantaneous
•  And this will get WAY worse if we move towards software-based

resilience

Computa,onal%Research%Division%|%Lawrence%Berkeley%

Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution

f7

f7

f7 f7

f/27

f/27

f/27

f/27

f/47

f/47

f/47 f/47

f7

f7

f7 f7

f7

f7

f7

f7

f7

f7

f7 f7

Fig:%Shekhar%Borkar%

Conven,onal% NTV%

•  Trend7
–  Sources%of%performance%nonuniformity%are%increasing%

–  Unclear%if%overheads%and%complexity%overwhelm%benefits%(adding!async!
to!loadBbalanced!code!just!adds!overhead)!

•  Challenge7
–  This%is%architectural%(you%can%turn%it%off%poten,ally)%
–  But%if%you%DO%turn%it%off,%then%you%will%pay%a%cost%in%both%energy%

efficiency%and%performance%(lowest%common%denominator)%

•  What7applica6ons7teams7should7think7about7
–  Can%your%algorithm%be%reformulated%to%tolerate%performance%non\

uniformity%(that%is%predictable?%%That%is%unpredictable?)%

–  Need%new%algorithms%(this%is%not%a%straight%port)%

–  need%this%to%conduct%the%experiment…%(don’t%think%about%this%as%

presupposing%the%solu,on)%

•  What7CS7teams7should7think7about7
–  If%you%have%some%good%examples%of%async%algorithms%can%you%develop%a%

model%that%determines%what%the%right%trade\off%is%between%run,me%

scheduling%overheads%

Performance7Heterogenity7

45

Assump6ons7of7Uniformity7is7Breaking7
(many'new'sources'of'heterogeneity)7

Computa,onal%Research%Division%|%Lawrence%Berkeley%

Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution Asynchronous7/7DAG7Execu6on7Model7

•  Bulk7Synchronous:7Most7of7the7
exis6ng7HPC7universe7

•  Sta6c7Dataflow7schedule:7
PLASMA/MAGMA7

•  Semi+sta6c7schedule:77Most7
AMR7libraries7(Chombo,7BoxLib)7

•  Full7Dynamic7Schedule:7OCR,7
HPX,7Charm++7

DAG7Scheduling7Doesn’t7Need7to7be7Dynamic7
to7be7useful7

47

Opportuni6es7for7Asynchronous7Execu6on7

48

P
ip

e
lin

in
g
: C

h
o
le

sk
y
 In

v
e
rsio

n

3
 S

te
p
s: F

a
c
to

r, In
v
e
rt L

, M
u
ltip

ly
 L

’s

7

$#
(&��(&(&�� �))!

�������?�
��
�4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#

(&���(&(&��-:0� �))!
��

(41�9
-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

J.Dongarra%

P
ip

e
lin

in
g
: C

h
o
le

s
k
y
 In

v
e
r
s
io

n

3
 S

t
e
p
s
: F

a
c
t
o
r
, In

v
e
r
t
 L

, M
u
lt

ip
ly

 L
’s

7

$#
(&

��(&
(&

�� �)
)
!
�������?�
��

�
4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#

(&
���(&

(&
��-:0� �)

)
!
��

(41�9
-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

7

$#(&��(&(&�� �))!�������?�
��
�4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

7

$#(&��(&(&�� �))!�������?�
��
�4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

Bulk%Synchronous%

(current%prac,ce)%

Asynchronous%%/%DAG%Model%/%sta,c%schedule%

(produc,on%interface%is%s,ll%topic%of%research)%

Finding%General%Purpose%programming%model%

to%express%these%constructs%requires%research.%

%

Clear%that%OMP4%tasking%model%is%not%a%

produc,ve%way%to%express%DAGs%(not%for%

domain%scien,sts%at%least,%but%could%be%the%

underlying%model%used%by%a%library%or%pmodel)%

Execu6on7Models7(what'the'heck'is'it?)'

•  What7is7the7parallelism7model?7

•  How7do7we7balance7produc9vity7and7implementa9on'efficiency'

•  Is7the7number7of7processors7exposed7in7the7model7

•  How7much7can7be7hidden7by7compilers,7libraries,7tools?7

Examples of parallel execution models
SPMD

barrier

barrier

barrier

Dynamic Threads
fork

fork

join

join

Event-Driven Vector
Op

Op
Op

Op
Op

Op

•  Where are we now
•  KNL: 2 x 8 DP word SIMD
•  GPU: 16-32 DP word SIMT

•  Trend: slow to no growth
•  Challenge

•  Compilers do terrible job of SIMD and provide little feedback
•  Q: Why do I care? My code is bandwidth limited?
•  A: Because load-store also depends on SIMD (will greatly limit your

L1 Load/store bandwidth if not SIMD’ized).
•  What applications teams should think about

•  Good news is SIMD supporting more vector-like constructs (so
constraints may start to look more like old vectors)

•  You know the drill (C$IVDEP) or ask Sam Williams
•  What should CS teams think about?

•  Do way have a play here? (is this primarily code generation?)
•  Can we create tools that provide more feedback than existing tools/

compilers?

SIMD

•  Trend:
•  Hard to tell if there is a trend
•  Its obviously getting harder, but data is stochastic
•  Issue is that we think about it all wrong

•  Challenge
•  You don’t know where the failures will occur. Must plan for them to

occur anywhere
•  Software bugs sometimes indistinguishable from HW failures
•  Titan sysadmin example

•  Applications teams
•  Can you add features to catch errors (right now we don’t look)
•  How do you currently respond to errors or isolate them
•  How can I find out the root cause for errors (debuggability).

•  CS teams
•  What can we do to automate identification of errors and prevent

propagation of tainted information (CD has a lot of blanks that need
to be filled in)

•  Techniques for isolating errors are tedious (can we automate them?)

Resilience

•  Trend:77
–  More%kinds%of%memory%with%more%diverse%characteris,cs%

–  Not%like%cache%(NVRAM%for%example%cannot%easily%be%treated%as%just%

another%level%of%the%memory%hierarchy)%

–  Last%level%of%memory%just%got%a%LOT%slower%

–  Fast%DRAM%is%a%one\,me%hit%(0.01%bytes/flop),%but%might%be%stable%

•  What7applica6ons7teams7should7think7about7
–  Can%you%use%the%high\capacity%slow%DRAM%(eventually%NVRAM)%at%all?%%

(is%0.01%bytes/flop%bandwidth%just%too%slow?)%

–  Can%you%live%with%0.01%bytes/flop%capacity?%(can%get%you%the%bandwidth)%
–  Or%perhaps%we%should%just%IGNORE%the%slower%memory%(less%complex)%

•  What7CS7teams7should7think7about7
–  Can%we%automate%data%mo,on%&%assignment%for%these%memory%spaces?%%

(can%we%treat%it%like%a%cache?)%

–  If%not,%what%interfaces%should%we%be%providing%to%our%apps%programmers%

to%make%use%of%these%spaces?%%(this%is%not%rocket%science…)%

Memory7Spaces7

52
Computa,onal%Research%Division%|%Lawrence%Berkeley%

Na,onal%Laboratory%|%Department%of%Energy%

•  Sources7of7performance7heterogeneity7increasing7
–  Heterogeneous%architectures%(accelerator)%
–  Thermal%throkling%

–  Performance%heterogeneity%due%to%transient%error%recovery%

7
•  Current7Bulk7Synchronous7Model7not7up7to7task7

–  Current%focus%is%on%removing%sources%of%performance%varia,on%

(jiker),%is%increasingly%imprac,cal%

–  Huge%costs%in%power/complexity/performance%to%extend%the%life%

of%a%purely%bulk%synchronous%model'

Embrace'performance'heterogeneity:''Study'use'of'asynchronous'
computa9onal'models'(e.g.'SWARM,'HPX,'and'other'concepts'
from'1980s)'

Conclusions7on7Heterogeneity7

•  Programming7Models7are7a7Reflec6on7of7the7Underlying7Machine7
Architecture7
–  Express!what!is!important!for!performance!

–  Hide!complexity!that!is!not!consequen4al!to!performance!

•  Programming7Models7are7Increasingly7Mismatched7with7
Underlying7Hardware7Architecture7
–  Changes!in!computer!architecture!trends/costs!

–  Performance!and!programmability!consequences!

•  Technology7changes7have7deep7and7pervasive7effect7on7ALL7of7our7
sokware7systems7(and'how'we'program'them)'

•  Change!in!costs!for!underlying!system!affect!what!we!expose'

•  What!to!virtualize'

•  What!to!make!more!expressive/visible'

•  What!to!ignore'

The7Programming7Systems7Challenge7

•  Changing7Hardware7is7very7expensive7and7takes7a7long7lead76me7

•  Changing7Sokware7(rewri6ng7our7codes)7is7very7expensive7and7
takes7a7long7lead76me7

•  Codesign7is7quan6ta6ve7trade+offs7analysis7because7in7a7cost7and7
power7constrained7environment,7you7need7to7know7what7you7are7
wiling7to7give7up7to7get7what7you7want.7777
–  Easy%to%ask%for%more%features%or%BW%to%be%added%to%the%machine%

–  It%is%much%harder%to%evaluate%what%you%are%willing%to%give%up%

–  par,cularly%when%the%cost%func,ons%are%highly%non\linear%and%machines%

do%not%yet%exist%(need%models)%

•  CoDesign7center7modeling7and7evalua6on7approach7is7focused7on7
providing7quan6ta6ve7informa6on7about7those7cost7trade+offs7to7
enable7ra6onal7and7thoughpul7decision7making7for7both7code7teams7
and7for7our7industry7partners7who7will7be7developing7the7machines7
that7run7those7codes.77(risk'mi9ga9on'for'expensive'decisions)'

The7Importance7of7Codesign7

55

•  Emerging7hardware7constraints7are7increasingly7mismatched7with7our7
current7programming7paradigm7

–  Current%emphasis%is%on%preserving%FLOPs%

–  The%real%costs%now%are%not%FLOPs…%it%is%data%movement%

–  Requires%shid%to%a%data\locality%centric%programming%paradigm%and%hardware%features%

to%support%it%

•  Technology7Changes7Fundamentally7Disrupt7our7Programming7
Environments7
–  The%programming%environment%and%associated%“abstract%machine%model”%is%a%

reflec,on%of%the%underlying%machine%architecture%%

–  Therefore,%design%decisions%can%have%deep%effect%your%en,re%programming%

paradigm%

–  The%BIGGEST%opportuni,es%in%energy%efficiency%and%

performance%improvements%require%HW%and%SW%considered%

together%(codesign)%

•  Performance7Portability7Should7be7Top+Tier7Metric7for7codesign7
–  Know%what%to%IGNORE,%what%to%ABSTRACT,%and%what%to%make%more%EXPRESSIVE7

Conclusions7

The7End7
For7more7informa6on7go7to7

7h"p://www.cal+design.org/7
77

Click to edit Master title style

Interconnects

Technology Trends and Effects on Application
Performance

58

Scalable7Interconnects7

•  Can’t7afford7to7con6nue7with7Fat+
trees7or7other7Fully+Connected7
Networks7(FCNs)7

•  But7will7Ultrascale7applica6ons7
perform7well7on7lower7degree7
networks7like7meshes,7hypercubes7or7
torii.7Or7high+radix7routers/tapered7
dragonfly?'

•  How7can7we7wire7up7a7custom7
interconnect7topology7for7each7
applica6on?7

Total # of Processors in Top15

0

50000

100000

150000

200000

250000

300000

350000

Ju
n
-9
3

D
e
c-
9
3

Ju
n
-9
4

D
e
c-
9
4

Ju
n
-9
5

D
e
c-
9
5

Ju
n
-9
6

D
e
c-
9
6

Ju
n
-9
7

D
e
c-
9
7

Ju
n
-9
8

D
e
c-
9
8

Ju
n
-9
9

D
e
c-
9
9

Ju
n
-0
0

D
e
c-
0
0

Ju
n
-0
1

D
e
c-
0
1

Ju
n
-0
2

D
e
c-
0
2

Ju
n
-0
3

D
e
c-
0
3

Ju
n
-0
4

D
e
c-
0
4

Ju
n
-0
5

D
e
c-
0
5

Ju
n
-0
6

List

P
ro

ce
ss

o
rs

60

Interconnect7Design7Considera6ons77
for7Message7Passing7Applica6ons7

•  Applica6on7studies7provide7insight7to7
requirements7for7Interconnects7(both7
on+chip7and7off+chip)7
–  On\chip%interconnect%is%2D%planar%

(crossbar%won’t%scale!)%

–  Sparse%connec,vity%for%most%apps.;%

crossbar%is%overkill%

–  No%single%best%topology%
–  Most%point\to\point%message%exhibit%

sparse%topology%+%oden%bandwidth%

bound%

–  Collec,ves%,ny%and%primarily%latency%

bound%

•  Ul6mately,7need7to7be7aware7of7the7on+
chip7interconnect7topology7in7addi6on7
to7the7off+chip7topology7
–  Adap,ve%topology%interconnects%(HFAST)%

–  Intelligent%task%migra,on?%

61

Interconnect7Design7Considera6ons77
for7Message7Passing7Applica6ons7

•  Applica6on7studies7provide7insight7to7
requirements7for7Interconnects7(both7
on+chip7and7off+chip)7
–  On\chip%interconnect%is%2D%planar%

(crossbar%won’t%scale!)%

–  Sparse%connec,vity%for%most%apps.;%

crossbar%is%overkill%

–  No%single%best%topology%
–  Most%point\to\point%message%exhibit%

sparse%topology%+%oden%bandwidth%

bound%

–  Collec,ves%,ny%and%primarily%latency%

bound%

•  Ul6mately,7need7to7be7aware7of7the7on+
chip7interconnect7topology7in7addi6on7
to7the7off+chip7topology7
–  Adap,ve%topology%interconnects%(HFAST)%

–  Intelligent%task%migra,on?%

Opportunity%

CCSM7Performance7Variability7
(trials'of'embedding'communica9on'topologies)'

•  Result7of73117runs7of7the7coupled7climate7model7showing7model7
throughput7as7a7func6on7of7comple6on7date.7

Data%from%Harvey%Wasserman%

COV%~9%%

Node7placement7of7a7fast,7average7and7slow7run7

Fast7run:79407seconds7 Slow7run:724627seconds7Average7run:711007seconds7

Y=87

X=177

Z=247

from'Ka9e'Antypas'

Node7placement7of7a7fast,7average7and7slow7run7

Fast7run:79407seconds7 Slow7run:724627seconds7Average7run:711007seconds7

Y=87

X=177

Z=247

from'Ka9e'Antypas'

Failure!to!exploit!

opportunity!

(when!virtualiza4on!of!

topology!goes!wrong)!

Topology7Op6miza6on7
(turning!FatBtrees!into!FitBtrees)!

•  A7Fit+tree7uses7OCS7to7prune7
unused7(or7infrequently7used)7
connec6ons7in7a7Fat+Tree7

•  Tailor7the7interconnect7
bandwidth7taper7to7match7
applica6on7data7flows7

65
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12
Fat-tree level

%
 B

a
n

d
w

id
th

 U
ti

li
z
a
ti

o
n

BB3D (P=512)

Cactus (P=1024)

GTC (P=8192)

LBCFD (P=1024)

Mbench (P=256)

PARATEC (P=256)

PMEMD (P=256)

SuperLU (P=256)

Click to edit Master title style

It will work,
But there are some things we could do better

(a LOT better)

Whats wrong with MPI3+OMP4

- 66 -

Old Model (Parallel DO and life was good)

8 OpenMP API • Version 4.0.0 - November 2013

Fortran
Example 1.1f

 SUBROUTINE SIMPLE(N, A, B)

 INTEGER I, N
 REAL B(N), A(N)

!$OMP PARALLEL DO !I is private by default
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 ENDDO
!$OMP END PARALLEL DO

Fortran
 END SUBROUTINE SIMPLE

Expressing7Hierarchical7Layout7

•  Old7Model7(OpenMP)7
–  Describe%how%to%parallelize%loop%itera,ons%
–  Parallel%“DO”%divides%loop%itera,ons%evenly%among%

processors%

–  .%.%.%but%where%is%the%data%located?%%

•  New7Model7(Data+Centric)7also'in'big'data'
–  Describe%how%data%is%laid%out%in%memory%

–  Loop%statements%operate%on%data%where%it%is%located%

–  Similar%to%MapReduce,%but%need%more%sophis,cated%

descrip,ons%of%data%layout%for%scien,fic%codes%

forall_local_data(i=0;i<NX;i++;A)

C[j]+=A[j]*B[i][j]);

68

OpenACC Example (directives in red)
John Levesque presentation

\%69%\%

Cray Inc. SNL Workshop Apr 9-11

!$acc data copyin(cix,ci1,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,ci10,ci11,&
!$acc& ci12,ci13,ci14,r,b,uxyz,cell,rho,grad,index_max,index,&
!$acc& ciy,ciz,wet,np,streaming_sbuf1, &
!$acc& streaming_sbuf1,streaming_sbuf2,streaming_sbuf4,streaming_sbuf5,&
!$acc& streaming_sbuf7s,streaming_sbuf8s,streaming_sbuf9n,streaming_sbuf10s,&
!$acc& streaming_sbuf11n,streaming_sbuf12n,streaming_sbuf13s,streaming_sbuf14n,&
!$acc& streaming_sbuf7e,streaming_sbuf8w,streaming_sbuf9e,streaming_sbuf10e,&
!$acc& streaming_sbuf11w,streaming_sbuf12e,streaming_sbuf13w,streaming_sbuf14w, &
!$acc& streaming_rbuf1,streaming_rbuf2,streaming_rbuf4,streaming_rbuf5,&
!$acc& streaming_rbuf7n,streaming_rbuf8n,streaming_rbuf9s,streaming_rbuf10n,&
!$acc& streaming_rbuf11s,streaming_rbuf12s,streaming_rbuf13n,streaming_rbuf14s,&
!$acc& streaming_rbuf7w,streaming_rbuf8e,streaming_rbuf9w,streaming_rbuf10w,&
!$acc& streaming_rbuf11e,streaming_rbuf12w,streaming_rbuf13e,streaming_rbuf14e, &
!$acc& send_e,send_w,send_n,send_s,recv_e,recv_w,recv_n,recv_s)
 do ii=1,ntimes
 o o o
 call set_boundary_macro_press2
 call set_boundary_micro_press
 call collisiona
 call collisionb
 call recolor

84

OMP4 example (from OMP4 docs)

\%70%\%

172 OpenMP API • Version 4.0.0 - November 2013

subroutine vec_mult(p, v1, v2, N)
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target data map(to: v1, v2) map(from: p)
 !$omp target
 !$omp parallel do
 do i=1,N

 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 !$omp end target data
 call output(p, N)

Fortran
end subroutine

target data Region Enclosing Multiple
target Regions
The following examples show how the target data construct maps variables to a
device data environment of a target region. The target data construct creates a
device data environment and encloses target regions, which have their own device
data environments. The device data environment of the target data region is
inherited by the device data environment of an enclosed target region. The target
data construct is used to create variables that will persist throughout the target
data region.

In the following example the variables v1 and v2 are mapped at each target
construct. Instead of mapping the variable p twice, once at each target construct, p is
mapped once by the target data construct.

C/C++
Example 49.2c

extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target data map(from: p[0:N])
 {
 #pragma omp target map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)

And you have to do this for
EVERY SINGLE LOOP!

\%71%\%

OpenMP Examples 179

extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target data if(N>THRESHOLD) map(from: p[0:N])
 {
 #pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 init_again(v1, v2, N);
 #pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = p[i] + (v1[i] * v2[i]);
 }
 output(p, N);

C/C++
}

Fortran
Example 49.6f

The if clauses work the same way for the following Fortran code. The target
constructs enclosed in the target data region should also use an if clause with the
same condition, so that the target data region and the target region are either
both created for the device, or are both ignored.

module params
integer,parameter :: THRESHOLD=1000000
end module
subroutine vec_mult(p, v1, v2, N)
 use params
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target data if(N>THRESHOLD) map(from: p)
 !$omp target if(N>THRESHOLD) map(to: v1, v2)
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call init_again(v1, v2, N)
 !$omp target if(N>THRESHOLD) map(to: v1, v2)
 !$omp parallel do

Click to edit Master title style

Will MPI3 RMA fix everything?

Whats Wrong with MPI?

- 72 -

MPI-3 RMA
– DOES IT FIX ALL THE
PROBLEMS?

Yili Zheng
FTG

3/9/15 73

MPI+37RMA7Window7Crea6on7

//"MPI"creates"a"Window"with"user4supplied"memory"
MPI_Win_create(base,"size,"disp_unit,"info,"comm,"
win)""
"
//"MPI"allocates"memory"and"creates"a"new"window"
MPI_Win_allocate(size,"disp_unit,"info,"comm,"
baseptr,"win)"
"
//"Create"a"dynamic"window"without"any"memory"
MPI_Win_create_dynamic(info,"comm,"win)"
//"Attach"memory"to"a"dynamic"window"
MPI_Win_attach(win,"base,"size)"
7
7
7

3/9/15 74

Comple6on7and7Buffer7Ownership7for7Non+
blocking7RMA7Opera6ons7

3/9/15
75

Source%buffer% Dest.%buffer%
User%

owns%

buffers%

System%

owns%

buffers%

NB%op%starts% Local%comple,on% Remote%comple,on%

MPI7RMA7Opera6ons7Are7Non+Blocking7By7
Default!7

MPI_Put(origin_addr,"origin_count,"
origin_datatype,"target_rank,"target_disp,"
target_count,"target_datatype,"win)"
"
MPI_Get(origin_addr,"origin_count,"
origin_datatype,"target_rank,"target_disp,"
target_count,"target_datatype,"win)""
7
7
MPI_Win_flush(rank,"win)"/"
MPI_Win_flush_all(win)"
//7MPI_WIN_FLUSH7completes7all7outstanding7RMA7
opera6ons7ini6ated7by7the7calling7process7to7the7target7
rank7on7the7specified7window.77The7opera6ons7are7
completed7both7at7the7origin7and7at7the7target.77
" 3/9/15 76

There!is!no!way!to!ensure!remote!comple4on!for!a!specific!

RMA!opera4on!!!See!PPoPP14!paper!on!CAF!on!MPIB3.!

How7I7Would7Implement7MPI_Put7with7
DMAPP7for7the7simple7cases7

If7the7data7type7is7con6guous7and7the7same7for7origin7and7target,7
it’s7very7easy7to7translate7the7arguments7from7MPI_Put7to7
dmapp_put_nbi.777
"
MPI_Put(origin_addr,"origin_count,"origin_datatype,"target_rank,"
target_disp,"target_count,"target_datatype,"win)"
"
dmapp_put_nbi("
""void"""""""""""""*target_addr,//"target_disp"
""dmapp_seg_desc_t"*target_seg,"//"win"
""dmapp_pe_t""""""""target_pe,""//"target_rank"
""void"""""""""""""*source_addr,//"origin_addr"
""uint64_t""""""""""nelems,"""""//"target_count"
""dmapp_type_t""""""type);""""""//"target_datatype"

3/9/15 77

MPI7Request+Based7RMA7

MPI_Rput(origin_addr,"origin_count,"origin_datatype,"
target_rank,"target_disp,"target_count,"
target_datatype,"win,"request)"
"
MPI_Rget(origin_addr,"origin_count,"origin_datatype,"
target_rank,"target_disp,"target_count,"
target_datatype,"win,"request)"

MPI_Wait(request,"status)"//"only"guarantees"local"
completion"for"Rput,"still"need"to"call"MPI_Win_flush"
for"remote"completion!""

3/9/15 78

Similar%to%UPC%non\blocking%

opera,ons%with%explicit%handles%

MPI+37RMA7locks7

MPI_Win_lock(lock_type,"rank,"assert,"win)"
MPI_Win_unlock(rank,7win)7
7
MPI_Win_lock_all(assert,7win)7
MPI_Win_unlock_all(assert,7win)7
7
MPI7locks7are7designed7for7access7epochs7and76ed7to7the7
whole7MPI7window.777
But'MPI'doesn’t'provide'the'equivalent'func9onality'of'

pthread_mutex_t'or'upc_lock_t,'which'is'cri9cal'to'

shared5memory'programming!'

'

7
"
"

3/9/15 79

//"Create"shared4memory"communicators"
MPI_Comm_split_type(comm,"
MPI_COMM_TYPE_SHARED,"key,"info,"newcomm)"
"
//"Create"shared4memory"windows"
MPI_Win_allocate_shared(size,"disp_unit,"
info,"comm,"baseptr,"win)"
"
//"Get"a"local"ptr"for"a"remote"windows"
MPI_Win_shared_query(win,"rank,"size,"
disp_unit,"baseptr)""
//"Read"and"write"with"baseptr"
…7
7
7
7

MPI+37Shared7Memory7

3/9/15 80

a.k.a.%MPI%+%MPI%

MPI+37Remote7(Atomic)7Updates7

MPI_Accumulate(origin_addr,"origin_count,"origin_datatype,"
target_rank,"target_disp,"target_count,"target_datatype,"
op,"win)"
"
"
MPI_Get_accumulate(origin_addr,"origin_count,"
origin_datatype,"result_addr,"result_count,"
result_datatype,"target_rank,"target_disp,"target_count,"
target_datatype,"op,"win)""
"
MPI_Fetch_and_op(origin_addr,7result_addr,7datatype,7target_rank,7
target_disp,7op,7win)7
MPI_Compare_and_swap(origin_addr,7compare_addr,7result_addr,7datatype,7
target_rank,7target_disp,7win)7
7
"

3/9/15 81

No!userBdefined!opera4on!for!Accumulate.!!

Otherwise,!you!can!use!it!for!Ac4ve!Messages.!

☺!

Fine7Print7about7MPI_Accumulate7in7the7
MPI+37Spec7

•  “Thus,'there'is'no'guarantee'that'the'en9re'call'to'
an'accumulate'opera9on'is'executed'atomically.”'

•  “Different'interleavings'can'lead'to'different'results'
only'to'the'extent'that'computer'arithme9cs'are'not'

truly'associa9ve'or'commuta9ve.”'

•  '“Accumulate'calls'enable'element5wise'atomic'read'

and'write'to'remote'memory'loca9ons.”'

7

3/9/15 82

You!may!get!elementBwise!nonBreproducible!

results!for!floa4ng!opera4ons!with!

MPI_Accumulate!!

2 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

E X A S C A L E
C O M P U T I N G

Exascale Computing Trends:
Adjusting to the “New Normal”
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time
to take stock and look forward in terms of scaling models and their implications for
future systems.

W e now have 20 years of data under
our belt as to the performance of
supercomputers against at least a
single floating-point benchmark

from dense linear algebra. Until approximately
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for
translating complex applications into reasonable
parallel programs.

In 2004, however, a confluence of events
changed forever the architectural landscape
that underpinned MPI. Figure 1 summarizes
the effects of these changes in terms of the
year-over-year compound annual growth rate
(CAGR) of several key system characteristics.
This data, taken from an average of the top
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance,
in flops (floating point operations) per second,
has grown consistently at about 1.9= per year.
Before 2004, this growth came from a modest
increase in the number of cores, coupled with

substantial (50 percent or better per year) in
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per
year skyrocketed, while the average core clock
growth disappeared, and memory per core even
declined.

The first half of this article delves into the
underlying reasons for these changes and what
they mean to system architectures. The second
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for
programming and algorithm design in future
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance
and memory chip density increase exponen-
tially over time, the real statement is that a
transistor’s key linear dimensions (its feature
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk
(meaning that more transistors can be placed
on a die), and its inherent delay (due largely
to the capacitance of its now smaller gate) has
declined. The dimensional shrinkage has also
been applied to the width of the wiring that

1521-9615/13/$31.00 © 2013 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

Peter Kogge
University of Notre Dame
John Shalf
Lawrence Berkeley National Laboratory

CISE-15-6-Shalf.indd 2 08/11/13 7:00 PM

2 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

E X A S C A L E
C O M P U T I N G

Exascale Computing Trends:
Adjusting to the “New Normal”
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time
to take stock and look forward in terms of scaling models and their implications for
future systems.

W e now have 20 years of data under
our belt as to the performance of
supercomputers against at least a
single floating-point benchmark

from dense linear algebra. Until approximately
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for
translating complex applications into reasonable
parallel programs.

In 2004, however, a confluence of events
changed forever the architectural landscape
that underpinned MPI. Figure 1 summarizes
the effects of these changes in terms of the
year-over-year compound annual growth rate
(CAGR) of several key system characteristics.
This data, taken from an average of the top
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance,
in flops (floating point operations) per second,
has grown consistently at about 1.9= per year.
Before 2004, this growth came from a modest
increase in the number of cores, coupled with

substantial (50 percent or better per year) in
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per
year skyrocketed, while the average core clock
growth disappeared, and memory per core even
declined.

The first half of this article delves into the
underlying reasons for these changes and what
they mean to system architectures. The second
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for
programming and algorithm design in future
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance
and memory chip density increase exponen-
tially over time, the real statement is that a
transistor’s key linear dimensions (its feature
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk
(meaning that more transistors can be placed
on a die), and its inherent delay (due largely
to the capacitance of its now smaller gate) has
declined. The dimensional shrinkage has also
been applied to the width of the wiring that

1521-9615/13/$31.00 © 2013 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

Peter Kogge
University of Notre Dame
John Shalf
Lawrence Berkeley National Laboratory

CISE-15-6-Shalf.indd 2 08/11/13 7:00 PM

CISE%CSE%2013%Ar,cle%

Original Article Title;
How I learned to Stop Worrying and Love Exascale

1/23/2013% Computa,onal%Research%Division%|%Lawrence%Berkeley%Na,onal%Laboratory%|%Department%of%Energy% 84

•  Start7out7with7the7abstrac6on7

•  Implement7prototype7as7a7library7
–  Old\school:%%new%version%of%xxxPack%
–  New\(old)\school:%template%metaprogramming%

•  If7that7works,7can7smuggle7it7into7an7embedded7direc6ve7

•  If7that7works7push7it7into7the7language7standard7
–  It%works%

Process7to7get7new7ideas7adopted7

85

Are7these7the7only7possible7AMMs?7
!

NO:!this!is!just!a!reflec4on!of!what!is!seen!developing!in!industry.!!

Specializa4on!&!other!architectures!possible.!!See!Sandia!XGC!Project!

86

Core Core

Core Core

Network-on-Chip

...

...
...

M
em

or
y

1/23/2013%

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Chip Boundary

Network

Core Acc.

MemMov MemMov

Network
Network-
on-Chip M

em
or

y

System
InterconnectNIC

