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Exascale Computing Trends:
Adjusting to the “New Normal”
for Computer Architecture

With two decades of data in hand about supercomputer performance, now is the time
to take stock and look forward in terms of scaling models and their implications for
future systems.
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e now have 20 years of data under

our belt as to the performance of

supercomputers against at least a

single floating-point benchmark
from dense linear algebra. Until approximately
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for
translating complex applications into reasonable
parallel programs.

In 2004, however, a confluence of events
changed forever the architectural landscape
that underpinned MPI. Figure 1 summarizes
the effects of these changes in terms of the
year-over-year compound annual growth rate
(CAGR) of several key system characteristics.
This data, taken from an average of the top
10 rankings reported by the TOP500 (www.
top500.0rg), shows that sustained performance,
in flops (floating point operations) per second,
has grown consistently at about 1.9x per year.
Before 2004, this growth came from a modest
increase in the number of cores, coupled with

substantial (50 percent or better per year) in
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per
year skyrocketed, while the average core clock
growth disappeared, and memory per core even
declined.

The first half of this article delves into the
underlying reasons for these changes and what
they mean to system architectures. The second
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for
programming and algorithm design in future
systems.

The Perfect Technological Storm

Moore’s law has driven microprocessor archi-
tectures and high-performance computing
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance
and memory chip density increase exponen-
tially over time, the real statement is that a
transistor’s key linear dimensions (its fearure
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¥ What is Performance Portability?

Definition from ASCR Programming Models Report (2009)

Minimize the number of lines of code that need to
change to re-tune when moving between different
vendor architectures of the same generation and to
future generations of the same vendor architecture

The fact that we have to completely rewrite our codes to fit future
machine constraints says more about our programming environment
than about the machines

(the programming env. targets the wrong abstractions)
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How do you GET Performance Portability?

Better Abstractions for programming the
underlying machine architecture

How do we build up these abstractions?
Start with an abstract machine model (AMM)
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o fEéSLIE%SEEThe Programming Model is a Reflection of
-the Underlying Abstract Machine Model

Martha Kim, Columbia U. Tech Report “Abstract Machine Models and Scaling Theory”
http://www.cs.columbia.edu/~martha/courses/4130/aul3/pdfs/scaling-theory.pdf

?????

 Equal cost SMP/PRAM model
— No notion of non-local access
— int [nx][ny][nZz];

00000

Pl Distributed Mem

* Cluster: Distributed memory model
— CSP: Communicating Sequential Processes
— No unified memory
— int [localNX][localNY][localNZ];

« 2-level (CTA in Martha Kim Taxonom;?? v v ?“?”?G

— Candidate Type Architecture (CTA)
— MPI+X model (for all practical purposes); SMP SMP SMP SMP

e Whats Next? @ 2-Level MPI+X is dominant, but insufficient!

()

Nt
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0 ~orecor: Parameterized Machine Model

LABORATORY

weneoennce oo o (WHAE do we need to reason about when designing a new code?)

Cores
*How Many
*Heterogeneous
*SIMD Width

Network on Chip (NoC)
*Are they equidistant or
*Constrained Topology (2D)
On-Chip Memory Hierarchy
*Automatic or Scratchpad?
*Memory coherency method?

Node Topology
*NUMA or Flat?
*Topology may be important
*Or perhaps just distance
Memory

*Nonvolatile / multi-tiered?
*Intelligence in memory (or not)

Fault Model for Node
* FIT rates, Kinds of faults
* Granularity of faults/recovery

Interconnect

*Bandwidth/Latency/Overhead
*Topology

Primitives for data movement/sync

*Global Address Space or messaging?
*Synchronization primitives/Fences
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0 o . Abstract Machine Model

0T (what do we need to reason about when designing a new code?)

For each parameterized machine attribute, can
* Ignore it: If ignoring it has no serious power/performance consequences

* Expose it (unvirtualize): If there is not a clear automated way of make decisions
*  Must involve the human/programmer in the process (make pmodel more expressive)

* Directives to control data movement or layout (for example)
* Abstract it (virtualize): If it is well enough understood to support an automated
mechanism to optimize layout or schedule
— This makes programmers life easier (one less thing to worry about)
Want model to be as simple as possible, but not neglect any aspects of the
machine that are important for performance




Exascale Strawman Arch

Based on input from DOE Fast Forward and Design
Forward Projects

Lets review where things are going in exascale concept designs




o ARCHITECTURE Computer Architecture vs. Physics
B Important not conflate one with the other

* Physics (technological constraints)
— Cost of data movement
— Capacity of DRAM cells
— Clock frequencies (constrained by end of Dennard scaling)
— Speed of Light
— Melting point of silicon
e Computer Architecture (design of the machine)
— Power management
— ISA / Multithreading
— SIMD widths

“Computer architecture, like other architecture, is the art of determining the
needs of the user of a structure and then designing to meet those needs as
effectively as possible within economic and technological constraints.” — Fred
Brooks (IBM, 1962)

Have converted many former “power” problems into “cost” problems

~ 1) Sandia
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o coveurer  Emerging Technology Constraints
SN (we didn’t design our codes with these in mind)

EXASCALE DESIGN SPACE EXPLORAT

Old Constraints New Constraints

» Peak clock frequency as primary « Power is primary design constraint for
limiter for performance improvement  future HPC system design

« Concurrency
parallelism b

JJAEREY - “Architecture” is the industry reaction

* Locality: MPI to those constraints
within node &

* Uniformity: A @ and
performance performance non-uniformity increase
* Reliability: It’s the hardware’s * Reliability: Cannot count on hardware

problem protection alone

Fundamentally breaks our current programming paradigm and computing ecosystem

e Sandia
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COMPUTER

N~ s Enduring Architecture Trends

Constraint: Can’t scale the clock frequency
— Arch Response: Only get performance from explicit parallelism
— Have to include lightweight cores for max efficiency
* Can’t get both capacity and bandwidth in one memory technology
— Split of memory into fast-low-capacity and slow-high-capacity
— NVRAM in this context is only there because low cost/bit
« Communication overheads hurt strong scaling
— Integrate NIC on board the processor chip
— Support light(er)weight messaging protocols (fewer steps)
* A challenge to scale up parallel POSIX disk-based filesystem
— Burst-buffer hardware is here to stay (software for it unclear)

— Whether it is on node or in I/O nodes (its slow enough that it looks the
same)

* Performance heterogeneity
— Architecture response? (research question)

~ 1) Sandia
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Hybrid Architectures:

EXASCALE DESIGN SPACE EXPLORATION 1 ' " o 4 " 11 N [} N "
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‘ ’Qﬁsggf Data Movement Increasing Relative to Ops

EXASCALE DESIG

FLOPs will cost less than

on-chip data movement!

(NUMA)

1000

=0=2008 (45nm)
==2018 (11nm)

Picojoules Per 64bit operation
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@ < Data Locality Management

LABORATORY

EXASCALE DESIGN SPACE EXPLORATION

Vertical Locality Management Horizontal Locality Management
(spatio-temporal optimization) (topology optimization)

Memory

Unified cache Level 2

Coherence
Domains

e Sandia
National
BERKELEY LAB Laboratories




m%@iE\Capacity OR Bandwidth

Cost (increases for higher capacity and cost/bit increases with bandwidth

Bandwidth\Capacity| 16 GB 32 GB 64 GB | 128GB | 256 GB | 512 GB 1TB
4TB/s
2 TB/s
1TB/s

512 GB/s

256 GB/s

128 GB/s

Stack/PNM

Interposer

HMC organic

Old Paradigm New Paradigm

« One kind of memory (JEDEC/DDRXx) * DDR4: ~1 byte per flop capacity with

« ~1 byte per flop memory capacity <0.01 bytes/flop BW
. ~1 byte per flop bandwidth e Stacked Memory: ~1 byte per flop bandwidth

< 0.01 bytes/flop capacity
« NVRAM: More capacity, but consumes more
Energy for writes than for reads.

~ 1) Sandia
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@ Families of AMMSs

EXASCALE DESIGN SPACE EXPLORATION

Heterogeneous Homogeneous
Manycore Manycore

Network-on-Chip : Network-on-Chip

Heterogeneous

Accelerator Attached Accelerator

Network-on-Chip Network-on-Chip

~
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@ Families of AMMSs

EXASCALE DESIGN SPACE EXPLORATION

Network-on-Chip : Network-on-Chip

Network-on-Chip

~
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0 ceoore Families of AMMSs

EXASCALE DESIGN SPACE EXPLORATION

Differentiation between GPU and
CPU-derived throughput cores

\,B((compller can abstract ISA)

Network-on-Chip

~
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@ < Are these the only possible AMMSs?

EXASCALE DESIGN SPACE EXPLORATIO

NO: this is just a reflection of what is seen developing in industry.
Specialization & other architectures possible. See Sandia XGC Project

( )

I

Network-
on-Chip

Network

Chip Boundar

tem

Interconnect
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0 oo Abstract Machine Model

EXASCALE DESIGN SPACE EXPLORATION

4 )
(Low Capacity, High Bandwidth)

( )

3D Stacked (High Capacity,
Memory Low Bandwidth)

~

) (
Thin Cores / Accelerators

Integrated NIC
for Off-Chip
Communication

Core Coherence Domain

~
A
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‘ i‘;?g.#EEEURE Exascale Node Schematic Model

EXASCALE DESIGN SPACE EXPLORATION

4 )
(Low Capacity, High Bandwidth)

(" )
3D Stacked (High Capacity,
Memory ' Low Bandwidth)

all I ai l L l il I al I il B
.!.—l_.!.—l_..._l_..._l_.u—l_...

EDC/ EDC/ EDC/ EDC/
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f\| National
23 :
BERKELEY LAB Laboratories




COMPUTER
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" Proxy Machine Model

Memory BW TB/s/node (chip)
Memory Size GB/node (chip)
Flops TF/node (chip)

# of Cores Cores/chip

# of Chips Chips/node
Cache (last L) S/core (KB)
Cache L1 S/core (KB)

NIC BW GB/s

NIC Latency = microseconds

Registers KB/chip

0.05 1

32 256 (16)
0.03 0.7

6 64

 exaNodel and 2 are many core architectures
 exaNodel uses commodity NIC and memory technology
 exaNode2 uses custom on-board NIC and faster memory technology

_ * exaPIM: Processing Near Memory, cache-less architecture

~
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COMPUTER

@ . Proxy Machines w/ Proxy Apps

ASCALE DESIGN SPACE EXPLORATION

= Proxy Applications (Mantevo): Future
= Application source for architecture-centric Applications

optimization and analysis

= http://mantevo.org

=  HPC Architectural Analysis Frameworks:
= http://www.cal-design.org/

=  http://www.opensocfabric.org/
=  http://SST-simulator.org
= ASC Advanced Architecture Test Beds:
System SW System SW

= Evolving examples of COTS “state-of-the-art”
= http://www.sandia.gov/asc/computational svstems/HAAPS.htn:\ /
= Abstract Machine Model (AMM) Definitions and

associated Proxy Architectures

=  Supported by SC/ASCR Computer Architecture Lab

= http://crd.Ibl.gov/assets/pubs presos Future
CALAbstractMachineModelsv1.1.pdf Architectures

~ 1) Sandia
/\l National
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P AMMSs vs. Proxy Machine Models

AMM is the topology and schematic for future machines

The Proxy Machine Model fills that in with speeds and feeds

Processor | Gflop/s per NoC BW per Processor Accelerator | Acc Memory | Acc Count | TFLOP/s per Node
Cores Proc Core | Proc Core (GB/s) | SIMD Vectors Cores BW (GB/s) | per Node Node! Count
(Units x Width)

Homogeneous M.C. Optl 256 64 8 8x16 None None None 16 62,500
Homogeneous M.C. Opt2 64 250 64 2x16 None None None 16 62,500
Discrete Acc. Optl 32 250 64 2x16 0(1000) 0(1000) 4 16C + 2A 55,000
Discrete Acc. Opt2 128 64 8 8x16 0(1000) 0(1000) 16 8C + 16A 41,000
Integrated Acc. Optl 32 64 64 2x16 0(1000) 0(1000) Integrated 30 33,000
Integrated Acc. Opt2 128 16 8 8x16 0O(1000) 0(1000) Integrated 30 33,000
Heterogeneous M.C. Optl | 16 / 192 250 64 /8 8x16 / 2x8 None None None 16 62,500
Heterogeneous M.C. Opt2 | 32 /128 64 64 /8 8x16 / 2x8 None None None 16 62,500
Concept Optl 128 50 8 12x1 128 0(1000) Integrated 6 125,000
Concept Opt2 128 64 8 12x1 128 0(1000) Integrated 8 125,000

Table 5.1: Optl and Optl represent possible proxy options for the abstract machine model. M.C": multi-core,
Acc: Accelerator, BW: bandwidth, Proc: processor, For models with accelerators and cores, C' denotes to
FLOP/s from the CPU cores and A denotes to FLOP /s from Accelerators.

~
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o renriaue: Programming Model Challenges
LABORATORY - = =
—o(Why is MPI+X not sufficient?)

 Lightweight cores not fast enough to process complex
protocol stacks at line rate

« Simplify MPI or add thread match/dispatch extensions
« Or use the memory address for endpoint matching (GAS)

« Can no longer ignore locality (especially inside of node)
« Its not just memory system NUMA issues anymore
« On chip fabric is not infinitely fast (Topology as first class citizen)
« Relaxed-relaxed consistency (or no guaranteed HW coherence)
 New Memory Classes & memory management
« NVRAM, Fast/low-capacity, Slow/high-capacity
« How to annotate & manage data for different classes of memory
« Asynchrony/Heterogeneity
« New potential sources of performance heterogeneity
« |Is BSP up to the task?

Sandia
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Implications for Future
Programming Models

What are the big challenges
for Future Programming Systems
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ARCHITECTURE

o COMPUTER The Problem with Wires:
~....... Energy to move data proportional to distance

- Cost to move a bit on copper wire:
- Power = Bitrate * Length / cross-section area

t

- Wire data capacity constant as feature size shrinks
- Cost to move bit proportional to distance
- Limits feasible off-chip BW with fixed pincount

- Photonics reduces distance-dependence of bandwidth,
but 1% efficient laser sources impact overall efficiency

- there is no magic bullet to solve this problem
Photonics requires no redrive

C ires to Si I lificati
opp:\:'er: Cflg:rgrsi_cc;“s;gcr:)an:gz;r:za on nd passive switch little power
e e e
x H R - H H rx X [959%%5% | RX
IUX L. x But laser power dominates

’\| |...| Sandia
BERKELEY LAB National _
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N B Data Centric / Global Address Space

EXASCALE DESIGN SPACE EXPLORATION

e  Motivation /;:"'/:‘:._.

1000

— Data movement cost exceeds compute

=4-2008 (45nm)

— Cost on-chip now distance dependent

~#-2018 (11nm)

— Complexity of enumerating hundreds
of cores (millions of MPI ranks)

Picojoules Per 64bit operation
= 5
o o
< |

e 0 Q‘(\/ & )l ¢ . & o
e Value Proposition R
— Reduce cost of data movement
(simpler compared to MPI 2-sided) e
. . Throughput Optimized C Optimized
— Data centric computation (compute on O thin Cores) Core

Massively Parallel,Simple (Fat Cores)

data where it is located... in-situ)
— Make this all much simpler to describe

* Implementations/Existence proofs
— UPC/UPC++:
— Co-Array Fortran / CAF2:

— RAJA/Kokkos: NNSA is putting majority of
its investment behind this path.

Coherence
Domain

~
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N _ wonro- TOwards a Data Centric Computing Model

EXASCALE DES SPACE E ORATION

* Old Model (OpenMP)

— Describe how to parallelize loop iterations
— Parallel “DO” divides loop iterations evenly among processors

— ... but where is the data located?

* New Model (Data-Centric) also in big data

— Describe how data is laid out in memory

— Change applies to ALL Loop statements operate data
where it is located (in-situ)

— Similar to MapReduce, but need more sophisticated descriptions of o e o e e e
data layout for scientific codes SEHEEL
forall local data(i=0;i<NX;i++;A)
C[J1+=A[J]1*B[1][]]): & 8 BB

frreeeer 1
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0 iitee Tiling: Abstraction for Memory Layout

LABORATORY '

* Current languages over-specify data layout and its connection to the
iteration space Need abstraction to separate the data layout from the
iteration space (Compilation also destroys index/layout information )

— Use metadata to abstract information about the data layout & index space
— Use Lambda Functions to abstract the iteration space for computation

* Enables data layout or tiling to change, but solvers remain unchanged !!!

a) Logical Tiles(CPU) b) Separated Tiles (GPU) c) Regional Tiles
\
3
cell tile
Separated tiles with halos
y
£\
region box

~ 1) Sandia
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o ARCHITECTURE Example TiDA Performance for SMC Proxy App and Geometric
S Multigrid (MiniGMG)

SMC Speedup over 1 Thread (Hopper) MiniMG Speedup over 1 Thread (Hopper)

25 16
==TiDA-LOG “-TIDA-LOG

14 TiDA-REG

20 =E=TiDA-SEP
12 ==OMP /
TiDA-REG Q. -Nai
g_ 5 % 10 OMP-Naive _
k; =><0MP 0
] g_ 8
% 10 &= Manual v 6
Tiling
5 4 8
2
# of Cores # of Cores
0 0
6 12 18 24 6 12 18 24

* Integrated into BoxLib (production AMR library) for testing/demonstration

* Naive code with TiDA outperforms native OpenMP code and matches (or
even exceeds) performance of manually otpimized tiling

* TiDA uses HWLOC() hardware locality mapping library to 2>

— automate optimal placement of data tiles
— Automate pinning of threadIDs to processors on multicore systems

~
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o ZS?S#@?URDTEC: Embedded DSLs ~ Generated code from DSL

LABORATORY Too Complex for Users to Write

fanothel‘ anrOGCh) (That is code in the background)

4% order stencil computation from
CNS Co-Design Proxy-App

Math:
Operator to compute in place
¢ = AM($° .
Where(b is defined on a union of Boxes<in a [2IM-dimensionaI AUtom atl Ca I Iy ge ne rated COd e:
rectangular lattice with mesh spacing h, an’ is the standard . ' 500+ “nes Of Optl miZEd COde

2*DIM + 1 point discretization of the Laplacian.

e 10 levels of memory hierarchy
e MPlused at highest level

impl ing DSL for r Write:
Simple Code us_ g DSL for Users to te * Optimized for Many-Core
double f(double& x, int y){return pow(x,y);}
Stencil lapStencil; 10 Level Software Managed Cache * 9 levels of software managed
for (dir = 0; dir < DIM; dir++){ Code generated from DSL
Point pt = getUnitv(dir); CaChe memory Ievels
lapStencil += Shift(pt) -2*Shift(pt*0) + Shift(-pt))/(h*h); ° Optimlzed ‘for NUMA architecture
}i .
void foo::operator (LevelData<RectGridArray<double>& a_phi){ Q lowest IeVEI,VGCtorized

a_phi.exchange();

eveloped using SNL SST Micro
Exascale Architecture Simulator

Iterator it(a_phi);

for (it.begin();it.ok();it++){
RectGridArray<double>& phiPatch =a_phi[it()];
phiPatch = f(.,5)@phiPatch;

phiPatch = lapStencil (phiPatch) on
a_phi.getBox(dit());

2, cournx, courny, cournz, rhoinv, dxlinv,dxinv, ddinv, CVinv;

bel (311l
[jcube] [icube] (] 131
bel (31

] Licube] (]131,2) + poulql2] [jcubel
ubel (31 113
cul

~
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@ Dpata Locality

Trend: increasing localization of data movement

— More NUMA domains (now within the chip)

— Higher cost of moving off-chip

— On Cori, we can ignore with some modest cost
Observations

— This is physics (not architecture), so hard to change

— NUMA memory locality different than NUMA on chip (both worse)
What Apps teams should think about

— Need to think about how you can express your algorithm and data

layouts in a way that maps easily to a 2D array of processor elements
within a chip.

What CS teams should think about

— How can we provide features in the programming environment that
automate the tedious process of binding data & work to specific cores
(pinning) in @ manner that is constrained by topology metadata

~
A
rrrrrrr ""|
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o wiso- Data Locality Abstractions

LABORATORY

(I8 it time for standardization?)

Many Examples in library and DSL form

« HTA: Hierarchical Tiled Arrays

« TiDA: Tiling as a Durable Abstraction

« RAJA & KOKKOS: C++ Template Metaprogram Lib (many other examples!!)
All arrived at similar underlying concepts

« Lamba functions to relax loop nest order
- Abstracts data physical layout from logical layout

When many different projects independently arrive at the same or
very similar solutions
« Perhaps they have found a reasonably optimal solution
- Its time to talk about standardization (MPI forum)
For Tiling Abstractions, see PADAL
(Programming Abstractions for Data Locality)
http://www.padalworkshop.org/

- - = -
 PADAL Workshop 20144

e B ¢ = . -
Apgt%8-29 Lugang:S_wytzerland -
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Light(er)weight Messaging

Moving towards Global Address Space and
MPI3 RMA

~ 1) Sandia
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@ communications

BEI..

Trend:

« Network/NIC bandwidth scaling, but per-core performance NOT.
- Simpler cores take longer to run MPI protocol stack (NOC ingress issues)

Challenge

- Wimpy cores present challenge to current threads/MPI relationship
« One rank per chip creates amdahl bottleneck
« Adding ranks per chip creates challenge for strong scaling

Solutions
- Lighter weight communication protocols (e.g. PGAS)
- Side-cores (Thor or BG/Q MPI)
- All processors as peers in communication (e.g. MPI thread multiple)
- Direct message queues between all processors (hardware support)
- Intel direct msg queues, AMD XTQ, NVIDIA malleable memory (can you use
these features?)
What applications teams should think about
« What is your high-level abstractions for communication? (e.g. halo exchange)

- Can it be extended to work with these different comm options? (PGAS, side-
core, direct message queues, all threads as peers)

- Which path is most effective and most maintainable in the long term
CS teams: already deeply involved in this area

1 ’\\m Sandia
BERKELEY LAB National _
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o PR Yelick/Zheng: LBNL

ceovor Communication (MPI+OMP vs. 1-sided RMA)
MPI+OpenMP PGAS/GAS/MPI3rma
box 2 box 3 box 2 box 3
(remote) (remote) (remote) (remote)
recv I
bufter ...
send recv
buffers buffer |
box 0 bo; box 0 | Dbox
(local) [ B¢ ) ~ (local) | (remote)
—>1 (unit stride) —>{ (unit stride) —1 (unit stride)

—1 (unit stride)

* One-sided enables direct
boundary exchange in only 7 step
while delegating details to runtime

* MPI 2-sided requires 4 sfeps to
communicate ghost zones with
neighbors for best performance”

- OpenMP has no mechanism to * Global'Addroptimizes for memory
handle multi-level memory hierarchy with hierarchical teams,
hiararcehyv ] 1H

=~ lalUlly

[ocales

*An alternative approach using MPI data types with fewer steps is possibl¢ tﬁﬁn.dia
its performance is much slower than the 4-step approach. ational

Laboratories
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EXASCALE DESIGN SPACE EXPLORATION

Beyond Bulk Synchronous
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3> s Looking Beyond Bulk Sync

e Motivation

— Many sources of machine performance variation (e.g. power
management, failure recovery, congestion....)

— Many sources of algorithmic variation

— Difficult to coordinate 1million processors to do the same thing
simultaneously (bulk synchronous)

* Value Proposition

— Describe task dependencies and have the computer handle the
complex scheduling

— Reduces workload on user to manage the scheduling (we use bulk
sync because it requires less thought... )

* Implementations

— OCR: Intel’s open community runtime (serves multiple impls.)
— HPX: Indiana/LSU (Sterling), slated to be part of C++17 standard.
— Charm++: Pre-dates MPI < and many others >

~
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@ Pperformance Heterogeneity

Bulk Synchronous Execution « Heterogeneous compute engines

(hybrid/GPU computing)

* Fine grained power mgmt. makes
homogeneous cores look
heterogeneous

 thermal throttling — no longer guarantee
deterministic clock rate
* Nonuniformities in process technology
creates non-uniform operating
characteristics for cores on a CMP

» Near Threshold Voltage (NTV)

Fault resilience introduces inhomogeneity in
execution rates
e error correction is not instantaneous

ﬂ » And this will get WAY worse if we move towards
software-based resilience

~ 1) Sandia
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@ Pperformance Heterogeneity

Bulk Synchronous Execution

Heterogeneous compute engines
(hybrid/GPU computing)

* Fine grained power mgmt. makes
homogeneous cores look
heterogeneous
 thermal throttling — no longer guarantee

deterministic clock rate

* Nonuniformities in process technology
creates non-uniform operating
characteristics for cores on a CMP
* Near Threshold Voltage (NTV)

Fault resilience introduces inhomogeneity in
execution rates
e error correction is not instantaneous

» And this will get WAY worse if we move towards
software-based resilience

~ 1) Sandia
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LABORATORY
sseaeoesanseace eeonaon— The big opportunities for energy efficiency require codesign!

o ~renreciure - Near Threshold Voltage (NTV): Shekhar Borkar (Intel)

Bulk Synchronous Execution  Heterogeneous compute engines (hybrid/
GPU computing)

* Fine grained power mgmt. makes
homogeneous cores look heterogeneous
 thermal throttling — no longer guarantee deterministic

clock rate

* Nonuniformities in process technology
creates non-uniform operating
characteristics for cores on a CMP
 Near Threshold Voltage (NTV)

Fault resilience introduces inhomogeneity in
execution rates

error correction is not instantaneous
And this will get WAY worse if we move towards software-based

resilience
Fig: Shekhar Borkar
f f
f f
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COMPUTER

N~ worioe Parformance Heterogenity

Trend
— Sources of performance nonuniformity are increasing

— Unclear if overheads and complexity overwhelm benefits (adding async
to load-balanced code just adds overhead)

Challenge
— This is architectural (you can turn it off potentially)

— But if you DO turn it off, then you will pay a cost in both energy
efficiency and performance (lowest common denominator)

What applications teams should think about

— Can your algorithm be reformulated to tolerate performance non-
uniformity (that is predictable? That is unpredictable?)

— Need new algorithms (this is not a straight port)

— need this to conduct the experiment... (don’t think about this as
presupposing the solution)

What CS teams should think about

— If you have some good examples of async algorithms can you develop a
model that determines what the right trade-off is between runtime
scheduling overheads

~ 1) Sandia
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o it Assumptions of Uniformity is Breaking

LABORATORY

E DESIGN SPACE EXPLORATION

Bulk Synchronous Execution

Unew(1:5)

~
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o DAG Scheduling Doesn’t Need to be Dynamic
* Bulk Synchronous: Most of the
existing HPC universe

e Static Dataflow schedule:
PLASMA/MAGMA

* Semi-static schedule: Most
AMR libraries (Chombo, BoxLib)

* Full Dynamic Schedule: OCR, @ &
HPX, Charm++

~ 1) Sandia
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O ~~Opportunities for Asynchronous Execution

EXASCALE DESIGN SPACE EXPLORATION J . Do nga rra
Bulk Synchronous Asynchronous / DAG Model / static schedule
(current practice) (production interface is still topic of research)

TRTRI

oeanee
\ @) s
o &
coSOLD
& o
: LAUUM Finding General Purpose programming model
:: to express these constructs requires research.
cew B
soe . .
>® Clear that OMP4 tasking model is not a
- POTRE+TR productive way to express DAGs (not for
Cholesky Fa domain scientists at least, but could be the

underlying model used by a library or pmodel)

) Sandia
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Execution Models (what the heck is it?)

Examples of parallel execution models

Vector

OpA {1

L]
op~1[[11]1]

Op|
0

SPMD

Op~A 11T

barrier

barrier

barrier

Dynamic Threads

Event-Driven

 What is the parallelism model?

 How do we balance productivity and implementation efficiency

* Is the number of processors exposed in the model

 How much can be hidden by compilers, libraries, tools?

~
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COMPUTER

ARCHITECTURE

LABORATORY S I M D
- E DESIGN SPACE EXPLORATION

Where are we now
« KNL: 2 x 8 DP word SIMD
- GPU: 16-32 DP word SIMT

Trend: slow to no growth

Challenge
« Compilers do terrible job of SIMD and provide little feedback
« Q: Why do | care? My code is bandwidth limited?

- A: Because load-store also depends on SIMD (will greatly limit your
L1 Load/store bandwidth if not SIMD’ized).

What applications teams should think about

« Good news is SIMD supporting more vector-like constructs (so
constraints may start to look more like old vectors)

- You know the drill ( C$IVDEP ) or ask Sam Williams

What should CS teams think about?
- Do way have a play here? (is this primarily code generation?)

- Can we create tools that provide more feedback than existing tools/
compilers?

1 ’\\Hﬁ Sandia
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Trend:

- Hard to tell if there is a trend

 Its obviously getting harder, but data is stochastic
- Issue is that we think about it all wrong

Challenge

- You don’t know where the failures will occur. Must plan for them to
occur anywhere

- Software bugs sometimes indistinguishable from HW failures
« Titan sysadmin example

Applications teams

- Can you add features to catch errors (right now we don’t look)
« How do you currently respond to errors or isolate them

« How can | find out the root cause for errors (debuggability).
CS teams

- What can we do to automate identification of errors and prevent
propagation of tainted information (CD has a lot of blanks that need
to be filled in)

- Techniques for isolating errors are tedious (can we automate them?)

’\| |...| Sandia
BERKELEY LAB National _
BEL. Laboratories
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@ Memory Spaces

* Trend:
— More kinds of memory with more diverse characteristics

— Not like cache (NVRAM for example cannot easily be treated as just
another level of the memory hierarchy)

— Last level of memory just got a LOT slower
— Fast DRAM is a one-time hit (0.01 bytes/flop), but might be stable
 What applications teams should think about

— Can you use the high-capacity slow DRAM (eventually NVRAM) at all?
(is 0.01 bytes/flop bandwidth just too slow?)

— Can you live with 0.01 bytes/flop capacity? (can get you the bandwidth)
— Or perhaps we should just IGNORE the slower memory (less complex)

* What CS teams should think about

— Can we automate data motion & assignment for these memory spaces?
(can we treat it like a cache?)

— If not, what interfaces should we be providing to our apps programmers
to make use of these spaces? (this is not rocket science...)

~
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N~ ‘i Conclusions on Heterogeneity

* Sources of performance heterogeneity increasing
— Heterogeneous architectures (accelerator)
— Thermal throttling
— Performance heterogeneity due to transient error recovery

* Current Bulk Synchronous Model not up to task

— Current focus is on removing sources of performance variation
(jitter), is increasingly impractical

— Huge costs in power/complexity/performance to extend the life
of a purely bulk synchronous model

Embrace performance heterogeneity: Study use of asynchronous
computational models (e.g. SWARM, HPX, and other concepts
from 1980s)

~ 1) Sandia
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COMPUTER

P The Programming Systems Challenge

* Programming Models are a Reflection of the Underlying Machine
Architecture

— Express what is important for performance
— Hide complexity that is not consequential to performance

* Programming Models are Increasingly Mismatched with
Underlying Hardware Architecture
— Changes in computer architecture trends/costs
— Performance and programmability consequences

 Technology changes have deep and pervasive effect on ALL of our
software systems (and how we program them)

Change in costs for underlying system affect what we expose

What to virtualize

What to make more expressive/visible
What to ignore

~ 1) Sandia
f\l i National
BERKELEY LAB Laboratories




P The Importance of Codesign

~
A
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BERKELEY LAB

Changing Hardware is very expensive and takes a long lead time

Changing Software (rewriting our codes) is very expensive and
takes a long lead time

Codesign is quantitative trade-offs analysis because in a cost and
power constrained environment, you need to know what you are
wiling to give up to get what you want.

— Easy to ask for more features or BW to be added to the machine
— It is much harder to evaluate what you are willing to give up

— particularly when the cost functions are highly non-linear and machines
do not yet exist (need models)

CoDesign center modeling and evaluation approach is focused on
providing quantitative information about those cost trade-offs to
enable rational and thoughtful decision making for both code teams
and for our industry partners who will be developing the machines
that run those codes. (risk mitigation for expensive decisions)
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0355555%55E Conclusions

* Emerging hardware constraints are increasingly mismatched with our
current programming paradigm
— Current emphasis is on preserving FLOPs

— The real costs now are not FLOPs... it is data movement

— Requires shift to a data-locality centric programming paradigm and hardware features
to support it

* Technology Changes Fundamentally Disrupt our Programming
Environments

— The programming environment and associated “abstract machine model” is a
reflection of the underlying machine architecture

— Therefore, design decisions can have deep effect your entire programming
paradigm
— The BIGGEST opportunities in energy efficiency and
performance improvements require HW and SW considered
together (codesign)
* Performance Portability Should be Top-Tier Metric for codesign
— Know what to IGNORE, what to ABSTRACT, and what to make more EXPRESSIVE
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The End

For more information go to
http://www.cal-design.org/




Interconnects

Technology Trends and Effects on Application
Performance
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Scalable Interconnects

Total # of Processors in Topl1l5

350000

e Can’t afford to continue with Fat-
trees or other Fully-Connected /
Networks (FCNs) /

@ 200000
o
a
g
<3
% 150000

* But will Ultrascale applications

perform well on lower degree /
networks like meshes, hypercubes or ,__,_,,/»f/f
torii. Or high-radix routers/tapered
d ragO nﬂY? LE+08 Number of Switch Ports in Fat-Tree
9.E+07
. BE407 | e
* How can we wire up a custom 7407
interconnect topology for each yo
application? T
3.E+07
2.E+07

LE+07 dg./
0.E400 el e
‘ N Y S S R S I S S
o NS . S LT G . S AN SRR TR SR
| A A - L G U
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o eneose - Interconnect Design Considerations

LABORATORY
[ n ] E e g I. I [ ] S

e Application studies provide insight to FVCALD Pt i Communicaton e
requirements for Interconnects (both 4
on-chip and off-chip)

— On-chip interconnect is 2D planar
(crossbar won’t scale!)

— Sparse connectivity for most apps.;
crossbar is overkill I —

Cactus Point-to-Point Communicatil ytes,
— No single best topology '

— Most point-to-point message exhibit
sparse topology + often bandwidth
bound

— Collectives tiny and primarily latency
bound - e

e Ultimately, need to be aware of the on- -,
chip interconnect topology in addition
to the off-chip topology :

— Adaptive topology interconnects (HFAST)

Intelligent task migration?

GTC Point-to-Point Communication (bytes)

1111111

1111111

0000000

~
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o renriuee  Interconnect Design Considerations

GTC Point-to-Point Communication (bytes)

LABORATORY I o o
L Application StUdies prOVide inSight to FVCAML1D Point-to-Point Communication (bytes)

requirements for Interconnects (both
on-chip and off-chip)
— On-chip interconnect is 2D planar
(crossbar won’t scale!)

— Sparse connectivity for most apps.;
crossbar is overkill s

Cactus Point-to-Point Communication (bytes)

— No single best topology
— Most point-to-point message exhibit ~ 5 ..::::::_.:::*' -
sparse topology + often bandwidth |
bound )
— Collectives tiny and primarily latency
bound
e Ultimately, need to be aware of the o -

chip interconnect topology in addition
to the off-chip topology

— Adaptive topology interconnects (HFAST)
Intelligent task migration?

1111111

ooooooo
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0 CE&M Performance Variability

ﬂﬂa’S 01 embedding communication topologies;

* Result of 311 runs of the coupled climate model showing model
‘throughput as a function of completion date.

Hopper CCSM Throughput  cov~9%

30
§ 25 ,0‘* v
- * e
- 20 ¥ o i ” Wf
§- ’4‘ ¢ ’»’ N
1 15 ° + o
b v
5 107 ¥
S
|
» B
0

19-Jan 8-Feb 28-Feb 20-Mar 9-Apr 29-Apr 19-May 8-Jun 28-Jun 18-Jul

Date
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COMPUTER
% deplacement of a fast, average and slow run

from Katie Antypas

Fast run: 940 seconds  Average run: 1100 seconds  Slow run: 2462 seconds
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% deplacement of a fast, average and slow run

from Katie Antypas

Failure to exploit

opportunity
(when virtualization of
topology goes wrong)

Fast run: 940 seconds  Average run: 1100 seconds  Slow run: 2462 seconds
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0 cowoer  Topology Optimization

LABORATORY

~~.......... (turning Fat-trees into Fit-trees)

A 2-ary 4-tree with 16 nodes.

dudhdhdh dRdudug

Figure 2: A (2,2,4)-TL fit-tree with 16 nodes.

* AFit-tree uses OCS to prune
unused (or infrequently used)
connections in a Fat-Tree

* Tailor the interconnect
bandwidth taper to match
application data flows

% Bandwidth Utilization

~
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Whats wrong with MPI3+OMP4

It will work,

But there are some things we could do better
(a LOT better)
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ooilaom%lel (Parallel DO and life was good)

DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
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g@ﬁiﬁﬁﬂhg Hierarchical Layout

* Old Model (OpenMP)

— Describe how to parallelize loop iterations

— Parallel “DO” divides loop iterations evenly among
processors

— ... but where is the data located?

 New Model (Data-Centric) also in big data

— Describe how data is laid out in memory

— Loop statements operate on data where it is located

— Similar to MapReduce, but need more sophisticated
descriptions of data layout for scientific codes

forall local data(1i=0;1<NX;i++;A)
C[J1+=A[J]1*B[1][J]);

~
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lj ig?ﬁgﬁACC Example (directives in red)

LABO

—eedJohn Levesque presentation

CRANY"

THE SUPERCOMPUTER COMPANY

Keep data on the accelerator with acc_data region

!Sacc data copyin(cix,cil,ci2,ci3,cid4,ci5,ci6,ci7,ci8,¢ci9,cil0,cill, &
!Sacc& cil2,cil3,cil4, r,b,uxyz,cell, rho,grad, index max, index, &
!Saccé& ciy,ciz,wet,np,streaming sbufl, &

!Saccé& streaming sbufl, streaming sbuf2,streaming sbuf4, streaming sbufb, &
!Saccé streaming sbuf7s, streaming sbuf8s, streaming sbuf9n, streaming sbuflls, &
ISaccé streaming sbuflln,streaming sbufl2n,streaming sbufl3s, streaming sbuflén, &
ISaccé streaming sbuf7e, streaming sbuf8w,streaming sbuf9e,streaming sbuflle, &
!Saccé streaming sbufllw,streaming sbuflZe,streaming sbufl3w, streaming sbuflidw, &
!Saccé streaming rbufl, streaming rbuf2,streaming rbuf4, streaming rbufb, &
ISaccs streaming rbuf7n, streaming rbuf8n, streaming rbuf9s, streaming rbuflOn, &
!Saccé& streaming rbuflls,streaming rbufl2s,streaming rbufl3n, streaming rbuflis, &
!Saccs streaming rbuf7w, streaming rbuf8e, streaming rbuf9w,streaming rbufllw, &
ISaccé streaming rbuflle,streaming rbufl2w,streaming rbufl3e, streaming rbuflide, &
ISaccé send e, send w,send n,send s,recv_e,recv_w,recv _n,recv_s)

do ii=1,ntimes

O 0 O

call set boundary macro press2
call set boundary micro press
call collisiona

call collisionb

call recolor

(¥5]




O figg”éﬁﬁl example (from OMP4 docs)

subroutine vec mult(p, v1, v2, N)
real :: p(N), vi(N), v2(N)
integer :: i
call init(vl, v2, N)
l1somp target data map(to: vl1l, v2) map(from: p)
lsomp target
lSomp parallel do
do i=1,N

p(i) = v1(i) * v2(1i)

end do
l1Somp end target
l1Somp end target data
call output(p, N)
end subroutine

frreeeer 1
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COMPUTER

~“And'you have to do this for

LAB

- EVERY SINGLE LOOP!

#pragma omp target data if (N>THRESHOLD) map (from: p[0:N])

{

#pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
#pragma omp parallel for
for (i=0; i<N; i++)
pli]l = v1[i] * v2[i];
init again(vl, v2, N);
#pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
#pragma omp parallel for
for (1=0; 1i<N; 1i++)
plil = pl[i] + (v1[i] * v2[i]);

frreeeer 1
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Whats Wrong with MPI1?

Will MPI3 RMA fix everything?
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MPI-3 RMA
- DOES IT FIXALL THE
PROBLEMS?

Yili Zheng
FTG




COMPUTER

ARCHITECTURE Y e
O ceoraory (MIPEI-=3 RMA Window Creation
EXASCALE DESIGN SPACE EXPLORATION

// MPI creates a Window with user-supplied memory

MPI _Win create(base, size, disp _unit, info, comm,
win)

// MPI allocates memory and creates a new window

MPI Win_allocate(size, disp unit, info, comm,
baseptr, )

// Create a dynamic window without any memory
MPI_Win_create_dynamic(info, comm, )

// Attach memory to a dynamic-window
MPI_Win_attach(win, base, size)

> Sandia
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EXASCALE DESIGN SPACE EXPLORSTIO

blocking RMA Operations

Source buffer Dest. buffer
User

owns |
buffers :

I
I
I
i
I
I
I
System ;,

. [
buffers
: )
[ | )
I NB op starts Local completion | Remote completion
v |

A Sandia
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o oG MPIRMA Operations Are Non-Blocking By

MPI Put(origin_addr, origin_count,
origin datatype, target rank, target disp,
target _count, target datatype, win)

MPI Get(origin_addr, origin_count,
origin_datatype, target rank, target disp,
target _count, target datatype, win)

There is no way to ensure remote completion for a specific
RMA operation!! See PPoPP14 paper on CAF on MPI-3.

MPI Win flush(rank, win) /
MPI_Win_flush all(w1n)

// MPI_WIN_FLUSH completes all outstanding RMA
operations initiated by the calling process to the target
rank on the specified window. The operations are
completed both at the origin and at the target.

> Sandia
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o it How | Would Implement MPI_Put with

MPI Put(origin_addr, origin_count, origin_datatype, target_rank,
target_disp, target_count, target_datatype, win)

dmapp_put_nbi(

void *target_addr,// target disp
dmapp_seg desc_t *target_seg, // win

dmapp_pe_t target _pe, // target rank
void *source_addr,// origin_addr
uinte4 t nelems, // target_count
dmapp_type_t type); // target_datatype

frreeeer 1
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COMPUTER

@ " MPI Request-Based RMA

MPI Rput(origin_addr, origin_count, origin_datatype,
target _rank, target_disp, target_count,
target_datatype, win, request)

MPI Rget(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count,
target_datatype, win, )

MPI_Wait(request, status) // only guarantees local
completion for Rput, still need to call MPI_Win_flush
for remote completion!

Similar to UPC non-blocking
operations with explicit handles

> Sandia
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@ MPI-3 RMA locks

MPI Win_lock(lock type, rank, assert, win)
MPI_Win_unlock(rank, win)

MPI_Win_lock_all(assert, win)
MPI_Win_unlock_all(assert, win)

MPI locks are designed for access epochs and tied to the
whole MPI window.

But MPI doesn’t provide the equivalent functionality of
pthread _mutex _t or upc_lock t, which is critical to
shared-memory programming!

Sandia
3/9/15 @ National?
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@ MPI-3 Shared Memory

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

a.k.a. MPI + MPI

// Create shared-memory communicators
MPI_Comm_split type(comm,
MPI_COMM_TYPE_SHARED, key, info, newcomm)

// Create shared-memory windows
MPI Win allocate shared(size, disp _unit,
info, comm, baseptr, win)

// Get a local ptr for.a remote windows
MPI Win shared guery(win, rank, size,
disp _unit, baseptr)

// Read and write with baseptr

S| 3915 () ists
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O\??ég'r?f%?f MPI-3 Remote (Atomic) Updates

MPI Accumulate(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count, target_datatype,

op, win) No user-defined operation for Accumulate.
Otherwise, you can use it for Active Messages.

MPI Get accumulate(origin_addr, origin_count,
origin_datatype, result _addr, result_count,

result_datatype, target_rank, target _disp, target_count,
target_datatype, op, win)

MPI_Fetch_and_op(origin_addr, , datatype, target_rank,
target_disp, op, win)

MPI_Compare_and_swap(origin_addr, compare_addr, result_addr, datatype,
target_rank, target_disp, win)

> Sandia
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0 o Fine Print about MPI1_Accumulate in the

 “Thus, there is no guarantee that the entire call to
an accumulate operation is executed atomically.”

* “Different interleavings can lead to different results
only to the extent that computer arithmetics are not

truly associative or commutative.”

e “Accumulate calls enable element-wise atomic read
and write to remote memory locations.”

You may get element-wise non-reproducible

results for floating operations with
I\/ID,I Accrimitatol
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CISE CSE 2013 Article

EXASCALE
COMPUTING

Exascale Computing Trends:
Adjusting to the “New Normal”
for Computer Architecture

With two decades of data in hand about supercomputer performance, now is the time
to take stock and look forward in terms of scaling models and their implications for
future systems.

1521-9615/13/$31.00 © 2013 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

PeTER KoGGE
University of Notre Dame
JoHN SHALF

Lawrence Berkeley National Laboratory

e now have 20 years of data under

our belt as to the performance of

supercomputers against at least a

single floating-point benchmark
from dense linear algebra. Until approximately
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for
translating complex applications into reasonable
parallel programs.

In 2004, however, a confluence of events
changed forever the architectural landscape
that underpinned MPI. Figure 1 summarizes
the effects of these changes in terms of the
year-over-year compound annual growth rate
(CAGR) of several key system characteristics.
This data, taken from an average of the top
10 rankings reported by the TOP500 (www.
top500.0rg), shows that sustained performance,
in flops (floating point operations) per second,
has grown consistently at about 1.9x per year.
Before 2004, this growth came from a modest
increase in the number of cores, coupled with

substantial (50 percent or better per year) in
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per
year skyrocketed, while the average core clock
growth disappeared, and memory per core even
declined.

The first half of this article delves into the
underlying reasons for these changes and what
they mean to system architectures. The second
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for
programming and algorithm design in future
systems.

The Perfect Technological Storm

Moore’s law has driven microprocessor archi-
tectures and high-performance computing
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance
and memory chip density increase exponen-
tially over time, the real statement is that a
transistor’s key linear dimensions (its fearure
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N~ woron Process to get new ideas adopted

e Start out with the abstraction

* Implement prototype as a library
— Old-school: new version of xxxPack
— New-(old)-school: template metaprogramming

* If that works, can smuggle it into an embedded directive

* If that works push it into the language standard
— It works
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EXASCALE DESIGN SPACE EXPLORATIO

NO: this is just a reflection of what is seen developing in industry.
Specialization & other architectures possible. See Sandia XGC Project
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