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2 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

E X A S C A L E 
C O M P U T I N G

Exascale Computing Trends: 
Adjusting to the “New Normal”  
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time  
to take stock and look forward in terms of scaling models and their implications for  
future systems.

W e now have 20 years of data under 
our belt as to the performance of 
supercomputers against at least a 
single floating-point benchmark 

from dense linear algebra. Until approximately 
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for 
translating complex applications into reasonable 
parallel programs.

In 2004, however, a confluence of events 
changed forever the architectural landscape 
that underpinned MPI. Figure 1 summarizes 
the effects of these changes in terms of the 
year-over-year compound annual growth rate 
(CAGR) of several key system characteristics. 
This data, taken from an average of the top 
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance, 
in flops (floating point operations) per second, 
has grown consistently at about 1.9= per year. 
Before 2004, this growth came from a modest 
increase in the number of cores, coupled with 

substantial (50 percent or better per year) in 
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per 
year skyrocketed, while the average core clock 
growth disappeared, and memory per core even 
declined.

The first half of this article delves into the 
underlying reasons for these changes and what 
they mean to system architectures. The second 
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for 
programming and algorithm design in future 
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing 
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance 
and memory chip density increase exponen-
tially over time, the real statement is that a 
transistor’s key linear dimensions (its feature 
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk 
(meaning that more transistors can be placed 
on a die), and its inherent delay (due largely 
to the capacitance of its now smaller gate) has 
declined. The dimensional shrinkage has also 
been applied to the width of the wiring that 
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Original Article Title; 
How I learned to Stop Worrying and Love Exascale 
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Defini6on7from7ASCR7Programming7Models7Report7(2009)7
!

Minimize'the'number'of'lines'of'code'that'need'to'
change'to're5tune'when'moving'between'different'
vendor'architectures'of'the'same'genera9on'and'to'
future'genera9ons'of'the'same'vendor'architecture'
7
The%fact%that%we%have%to%completely%rewrite%our%codes%to%fit%future%

machine%constraints%says%more%about%our%programming%environment%

than%about%the%machines%%

%

(the!programming!env.!targets!the!wrong!abstrac4ons)!

What7is7Performance7Portability?7

5 
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Better Abstractions for programming the 
underlying machine architecture 

 
How do we build up these abstractions? 

Start with an abstract machine model (AMM) 

How do you GET Performance Portability? 



The Programming Model is a Reflection of 
the Underlying Abstract Machine Model 

•  Equal cost SMP/PRAM model 
–  No notion of non-local access 
–  int [nx][ny][nz]; 

•  Cluster: Distributed memory model 
–  CSP: Communicating Sequential Processes 
–  No unified memory 
–  int [localNX][localNY][localNZ]; 

•  2-level (CTA in Martha Kim Taxonomy) 
–  Candidate Type Architecture (CTA) 
–  MPI+X model (for all practical purposes) 

•  Whats Next? 

SMP 

P P P P P 

P P P P P 

MPI Distributed Memory 

Martha%Kim,%Columbia%U.%Tech%Report%“Abstract%Machine%Models%and%Scaling%Theory”%

h6p://www.cs.columbia.edu/~martha/courses/4130/au13/pdfs/scalingBtheory.pdf!

%

SMP%

P P P

SMP%

P P P

SMP%

P P P

SMP%

P P P

25Level'MPI+X'is'dominant,'but'insufficient!'



Parameterized7Machine7Model7
(what'do'we'need'to'reason'about'when'designing'a'new'code?)'

Cores7
• How%Many%

• Heterogeneous%
• SIMD%Width%

Network7on7Chip7(NoC)7
• Are%they%equidistant%or%%
• Constrained%Topology%(2D)!

On+Chip7Memory7Hierarchy7
• Automa,c%or%Scratchpad?%

• Memory%coherency%method?%

Node7Topology7
• NUMA%or%Flat?%

• Topology%may%be%important%

• Or%perhaps%just%distance%
Memory7

• Nonvola,le%/%mul,\,ered?%

• Intelligence%in%memory%(or%not)%

Fault7Model7for7Node7
• %FIT%rates,%Kinds%of%faults%
• %Granularity%of%faults/recovery%

Interconnect7
• Bandwidth/Latency/Overhead%
• Topology%

Primi6ves7for7data7movement/sync7
• Global%Address%Space%or%messaging?%

• Synchroniza,on%primi,ves/Fences%



For7each7parameterized7machine7a"ribute,7can77
•  Ignore7it:7If'ignoring'it'has'no'serious'power/performance'consequences'

•  Expose7it7(unvirtualize):'If'there'is'not'a'clear'automated'way'of'make'decisions'
•  Must%involve%the%human/programmer%in%the%process%(make'pmodel'more'expressive)'

•  Direc,ves%to%control%data%movement%or%layout%(for%example)%

•  Abstract7it7(virtualize):'If'it'is'well'enough'understood'to'support'an'automated'

mechanism'to'op9mize'layout'or'schedule'

–  This%makes%programmers%life%easier%(one%less%thing%to%worry%about)%

Want7model7to7be7as7simple7as7possible,7but7not7neglect7any7aspects7of7the7
machine7that7are7important7for7performance7

Abstract7Machine7Model77
(what'do'we'need'to'reason'about'when'designing'a'new'code?)7



Exascale7Strawman7Arch7
Based7on7input7from7DOE7Fast7Forward7and7Design7
Forward7Projects7

•  Lets review where things are going in exascale concept designs 



•  Physics7(technological7constraints)7
–  Cost%of%data%movement%

–  Capacity%of%DRAM%cells%

–  Clock%frequencies%(constrained%by%end%of%Dennard%scaling)%
–  Speed%of%Light%
–  Mel,ng%point%of%silicon%

•  Computer7Architecture7(design7of7the7machine)7
–  Power%management%

–  ISA%/%Mul,threading%

–  SIMD%widths%

“Computer%architecture,%like%other%architecture,%is%the%art%of%determining%the%

needs%of%the%user%of%a%structure%and%then%designing%to%meet%those%needs%as%

effec,vely%as%possible%within%economic%and%technological%constraints.”%–!Fred!
Brooks!(IBM,!1962)!

!

Have'converted'many'former'“power”'problems'into'“cost”'problems'

Computer7Architecture7vs.7Physics7
Important!not!conflate!one!with!the!other!

11 



Emerging7Technology7Constraints7
(we!didn’t!design!our!codes!with!these!in!mind)!

12 

Old Constraints 

•  Peak clock frequency as primary 
limiter for performance improvement 

•  Cost: FLOPs are biggest cost for 
system: optimize for compute 

•  Concurrency: Modest growth of 
parallelism by adding nodes 

•  Memory scaling: maintain byte per 
flop capacity and bandwidth 

•  Locality: MPI+X model (uniform costs 
within node & between nodes) 

•  Uniformity:  Assume uniform system 
performance 

•  Reliability: It’s the hardware’s 
problem 

New Constraints 

•  Power is primary design constraint for 
future HPC system design 

•  Cost: Data movement dominates: 
optimize to minimize data movement 

•  Concurrency: Exponential growth of 
parallelism within chips 

•  Memory Scaling: Compute growing 2x 
faster than capacity or bandwidth 

•  Locality: must reason about data 
locality and possibly topology 

•  Heterogeneity: Architectural and 
performance non-uniformity increase 

•  Reliability: Cannot count on hardware 
protection alone 

Fundamentally'breaks'our'current'programming'paradigm'and'compu9ng'ecosystem'
%

This%is%Physics/Technology%Constraints%

%

“Architecture”%is%the%industry%reac,on%

to%those%constraints%%



•  Constraint:7Can’t7scale7the7clock7frequency7
–  Arch'Response:%Only%get%performance%from%explicit%parallelism%

–  Have%to%include%lightweight%cores%for%max%efficiency%

•  Can’t7get7both7capacity7and7bandwidth7in7one7memory7technology7
–  Split%of%memory%into%fast\low\capacity%and%slow\high\capacity%

–  NVRAM%in%this%context%is%only%there%because%low%cost/bit%

•  Communica6on7overheads7hurt7strong7scaling7
–  Integrate%NIC%on%board%the%processor%chip%
–  Support%light(er)weight%messaging%protocols%(fewer%steps)%

•  A7challenge7to7scale7up7parallel7POSIX7disk+based7filesystem7
–  Burst\buffer%hardware%is%here%to%stay%(sodware%for%it%unclear)%
–  Whether%it%is%on%node%or%in%I/O%nodes%(its%slow%enough%that%it%looks%the%

same)%

•  Performance7heterogeneity7
–  Architecture!response?!(research!ques4on)!

Enduring7Architecture7Trends7

13 
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Hybrid7Architectures:7
Moving!from!sideBshow!to!necessity!

Lightweight%cores%or%

Hybrid%is%the%only%

approach%that%crosses%

the%exascale%finish%line%

Can7con6nue7with7
conven6onal7x867
architectures7if7you7

want.7

We7have7go"en7to7150PF7
by7accep6ng7lightweight7

cores7(Not7by7arch7
breakthrough!!!)77What7
trades7will7are7you7willing7
to7make7to7get7next710x77
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Data Locality Management 

Vertical Locality Management 
(spatio-temporal optimization) 

Horizontal Locality Management 
(topology optimization) 

16%

Coherence%

Domains%



Can7Get7Capacity7OR7Bandwidth7
But7Cannot7Get7Both7in7the7Same7Technology7

17 
1/23/

2013%

Bandwidth\Capacity. 16.GB. 32.GB. 64.GB. 128.GB. 256.GB. 512.GB. 1.TB.
4.TB/s. .. .. .. .. .. ..
2.TB/s. Stack/PNM. .. .. .. .. .. ..
1.TB/s. .. Interposer.. .. .. .. ..

512.GB/s. .. .. .. HMC.organic. .. ..
256.GB/s. .. .. .. .. DIMM.. ..  ..
128.GB/s. .. .. .. .. .. NVRAM..

Cost (increases for higher capacity and cost/bit increases with bandwidth) 

P
o
w
e
r 

Old7Paradigm7
•  One%kind%of%memory%(JEDEC/DDRx)%

•  ~1%byte%per%flop%memory%capacity%

•  ~1%byte%per%flop%bandwidth%

New7Paradigm7
•  DDR4:%~1%byte%per%flop%capacity%with%

%<%0.01%bytes/flop%BW%

•  Stacked7Memory:%~1%byte%per%flop%bandwidth%
<%0.01%bytes/flop%capacity%

•  NVRAM:%More%capacity,%but%consumes%more%

Energy%for%writes%than%for%reads.%

%



Families7of7AMMs7

18 
1/23/

2013%
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Families7of7AMMs7
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Families7of7AMMs7
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Differen6a6on7between7GPU7and7
CPU+derived7throughput7cores7
•  ISA%
•  Security/Protec,on%
•  SIMD%Width%%

•  Thread%Divergence%
•  Cache%Coherence%
•  Kernel%Launch%(accel%model)%

7

(compiler!can!abstract!ISA)!



Are7these7the7only7possible7AMMs?7
!

NO:!this!is!just!a!reflec4on!of!what!is!seen!developing!in!industry.!!

Specializa4on!&!other!architectures!possible.!!See!Sandia!XGC!Project!

21 
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3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

22 

Abstract7Machine7Model7
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Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip
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Exascale7Node7Schema6c7Model7
(also'for'all'pre5exascale'systems)7



Proxy7Machine7Model7
777 Hopper7 exaNode17 exaNode27 exaPIM7

Memory%BW% TB/s/node%(chip)% 0.05% 1% 4% 1%

Memory%Size% GB/node%(chip)% 32% 256% 32% 256%(16)%

Flops% TF/node%(chip)% 0.03% 10% 10% 0.7%

#%of%Cores% Cores/chip% 6% 1024% 1024% 64%

#%of%Chips% Chips/node% 4% 1% 1% 16%

Cache%(last%L)% $/core%(KB)% 1024% 32\256% 32\256% 0%

Cache%L1% $/core%(KB)% 64% 32\64% 32\64% 0%

NIC%BW% GB/s% 1% 100% 400% 25%

NIC%Latency% microseconds% 1% 0.4% 0.02% 0.02%

Registers% KB/chip%

•  exaNode1%and%2%are%many%core%architectures%

•  exaNode1%uses%commodity%NIC%and%memory%technology%

•  exaNode2%uses%custom%on\board%NIC%and%faster%memory%technology%%%

•  exaPIM:%Processing%Near%Memory,%cache\less%architecture%



Proxy7Machines7w/7Proxy7Apps7
Future 

Applications 

Future 
Architectures 

System SW 

Proxy Apps 

HPC Arch. 
Simulators 

Adv. Arch. 
Testbeds 

77System7SW777

!  Proxy7Applica6ons7(Mantevo):7
!  Applica,on%source%for%architecture\centric%

op,miza,on%and%analysis%

!  hkp://mantevo.org%

!  Abstract7Machine7Model7(AMM)7Defini6ons7and7
associated7Proxy7Architectures7
!  Supported%by%SC/ASCR%Computer%Architecture%Lab%

!  hkp://crd.lbl.gov/assets/pubs_presos/

CALAbstractMachineModelsv1.1.pdf%

Proxy Archs 

!  HPC7Architectural7Analysis7Frameworks:77
!  hkp://www.cal\design.org/%

!  hkp://www.opensocfabric.org/%

!  hkp://SST\simulator.org%

!  ASC7Advanced7Architecture7Test7Beds:7
!  Evolving%examples%of%COTS%“state\of\the\art”%

!  hkp://www.sandia.gov/asc/computa,onal_systems/HAAPS.html%

25%



AMMs7vs.7Proxy7Machine7Models7

26 

Chapter 5

Proxy Architectures for Exascale
Computing

Proxy architecture models (PAMs) were introduced as a codesign counterpart to proxy applications in the DOE
ASCAC report on the Top Ten Exascale Research Challenges [?]. This Computer Architecture Laboratory
(CAL) AMM document separates the PAMl concept into AMM and proxy architectures, but the intent is still
to facilitate codesign and communication.

In this section we identify approximate estimates for key parameters of interest to application developers.
Many of these parameters can be used in conjunction with the AMM models described previously to obtain
rough estimates of full node performance. These parameters are intended to support design-space exploration
and should not be used for parameter- or hardware- specific optimization as, at this point in the development of
Exascale architectures, the estimates may have considerable error. In particular, hardware vendors might not
implement every entry in the tables provided in future systems; for example, some future processors may not
include a Level-3 cache.

5.1 Design Parameters

The following list of parameters allows application developers and hardware architects to tune any AMMs to
their desire. The list is not exhaustive and will continue to grow as needed. Since this list is for all AMMs
presented in this document, not all parameters are expected to be applicable to every AMM. In fact, we expect
that for each AMM only a subset of this list of parameters will be used for architecture tuning. Likewise, not
all parameters are useful for application developers, such as bandwidth of each level of the cache structure.

Processor Gflop/s per NoC BW per Processor Accelerator Acc Memory Acc Count TFLOP/s per Node
Cores Proc Core Proc Core (GB/s) SIMD Vectors Cores BW (GB/s) per Node Node1 Count

(Units x Width)

Homogeneous M.C. Opt1 256 64 8 8x16 None None None 16 62,500
Homogeneous M.C. Opt2 64 250 64 2x16 None None None 16 62,500
Discrete Acc. Opt1 32 250 64 2x16 O(1000) O(1000) 4 16C + 2A 55,000
Discrete Acc. Opt2 128 64 8 8x16 O(1000) O(1000) 16 8C + 16A 41,000
Integrated Acc. Opt1 32 64 64 2x16 O(1000) O(1000) Integrated 30 33,000
Integrated Acc. Opt2 128 16 8 8x16 O(1000) O(1000) Integrated 30 33,000
Heterogeneous M.C. Opt1 16 / 192 250 64 / 8 8x16 / 2x8 None None None 16 62,500
Heterogeneous M.C. Opt2 32 / 128 64 64 / 8 8x16 / 2x8 None None None 16 62,500
Concept Opt1 128 50 8 12x1 128 O(1000) Integrated 6 125,000
Concept Opt2 128 64 8 12x1 128 O(1000) Integrated 8 125,000

Table 5.1: Opt1 and Opt1 represent possible proxy options for the abstract machine model. M.C: multi-core,
Acc: Accelerator, BW : bandwidth, Proc: processor, For models with accelerators and cores, C denotes to
FLOP/s from the CPU cores and A denotes to FLOP/s from Accelerators.

18

AMM7is7the7topology7and7schema6c7for7future7machines7
7
The7Proxy7Machine7Model7fills7that7in7with7speeds7and7feeds7
7



•  Lightweight cores not fast enough to process complex 
protocol stacks at line rate 
•  Simplify MPI or add thread match/dispatch extensions 
•  Or use the memory address for endpoint matching (GAS) 

•  Can no longer ignore locality (especially inside of node) 
•  Its not just memory system NUMA issues anymore 
•  On chip fabric is not infinitely fast (Topology as first class citizen) 
•  Relaxed-relaxed consistency (or no guaranteed HW coherence) 

•  New Memory Classes & memory management 
•  NVRAM, Fast/low-capacity, Slow/high-capacity 
•  How to annotate & manage data for different classes of memory 

•  Asynchrony/Heterogeneity 
•  New potential sources of performance heterogeneity 
•  Is BSP up to the task? 

Programming Model Challenges 
(why is MPI+X not sufficient?) 

27 



Click to edit Master title style 

What are the big challenges 
for Future Programming Systems 

Implications for Future 
Programming Models 

28 



•  Cost to move a bit on copper wire: 
•  Power = Bitrate * Length / cross-section area 

•  Wire data capacity constant as feature size shrinks 
•  Cost to move bit proportional to distance 
•  Limits feasible off-chip BW with fixed pincount 
•  Photonics reduces distance-dependence of bandwidth, 

but 1% efficient laser sources impact overall efficiency 
•  there is no magic bullet to solve this problem 

The Problem with Wires:  
Energy to move data proportional to distance 

Copper requires to signal amplification 
even for on-chip connections  

Photonics requires no redrive 
and passive switch little power 

 
 

But laser power dominates 



•  Mo6va6on7
–  Data%movement%cost%exceeds%compute%

–  Cost%on\chip%now%distance%dependent%
–  Complexity%of%enumera,ng%hundreds%

of%cores%(millions%of%MPI%ranks)%

•  Value7Proposi6on7
–  Reduce%cost%of%data%movement%

(simpler%compared%to%MPI%2\sided)%

–  Data%centric%computa,on%(compute%on%

data%where%it%is%located…%in\situ)%

–  Make%this%all%much%simpler%to%describe%

•  Implementa6ons/Existence7proofs7
–  UPC/UPC++:%%%

–  Co\Array%Fortran%/%CAF2:%

–  RAJA/Kokkos:%%NNSA%is%putng%majority%of%

its%investment%behind%this%path.%

Data7Centric7/7Global7Address7Space7
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Towards7a7Data7Centric7Compu6ng7Model7

•  Old7Model7(OpenMP)7
–  Describe%how%to%parallelize%loop%itera,ons%
–  Parallel%“DO”%divides%loop%itera,ons%evenly%among%processors%

–  .%.%.%but%where%is%the%data%located?%%

•  New7Model7(Data+Centric)7also'in'big'data'
–  Describe%how%data%is%laid%out%in%memory%

–  Change%applies%to%ALL%Loop%statements%operate%data%

where%it%is%located%(in\situ)%

–  Similar%to%MapReduce,%but%need%more%sophis,cated%descrip,ons%of%

data%layout%for%scien,fic%codes%

forall_local_data(i=0;i<NX;i++;A) 

C[j]+=A[j]*B[i][j]);

31 



•  Current7languages7over+specify7data7layout7and7its7connec6on7to7the7
itera6on7space7Need7abstrac6on7to7separate7the7data7layout7from7the7
itera6on7space7(Compila6on7also7destroys7index/layout7informa6on7)7
–  Use7metadata7to7abstract7informa6on7about7the7data7layout7&7index7space7
–  Use7Lambda7Func6ons7to7abstract7the7itera6on7space7for7computa6on7

•  Enables7data7layout7or76ling7to7change,7but7solvers7remain7unchanged7!!!77

Tiling:7Abstrac6on7for7Memory7Layout7
CAF2,7UPC++,7Chapel,7TiDA,7Raja/Kokkos7

32 

a)  Logical Tiles(CPU)             b) Separated Tiles (GPU)                              c) Regional Tiles       
                   

cell            tile

Separated tiles with halos

region            box



Example7TiDA7Performance7for7SMC7Proxy7App7and7Geometric7
Mul6grid7(MiniGMG)7

•  Integrated7into7BoxLib7(produc6on7AMR7library)7for7tes6ng/demonstra6on7
•  Naïve7code7with7TiDA7outperforms7na6ve7OpenMP7code7and7matches7(or7

even7exceeds)7performance7of7manually7otpimized76ling7
•  TiDA7uses7HWLOC()7hardware7locality7mapping7library7to7!7

–  automate%op,mal%placement%of%data%,les%%

–  Automate%pinning%of%threadIDs%to%processors%on%mul,core%systems%
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DTEC:7Embedded7DSLs7
(another!approach)!

Math: 
Operator to compute in place 

Where     is defined on a union of Boxes in a DIM-dimensional 
rectangular lattice with mesh spacing h, and         is the standard 
2*DIM + 1 point discretization of the Laplacian. 
 

Simple Code using DSL for Users to Write: 
double f(double& x, int y){return pow(x,y);}

Stencil lapStencil;

  for (dir = 0; dir < DIM; dir++){

    Point pt = getUnitv(dir); 

    lapStencil += Shift(pt) -2*Shift(pt*0) + Shift(-pt))/(h*h);

  };

void foo::operator(LevelData<RectGridArray<double>& a_phi){

  a_phi.exchange();

  Iterator it(a_phi);

  for (it.begin();it.ok();it++){

   RectGridArray<double>& phiPatch =a_phi[it()];

   phiPatch = f(.,5)@phiPatch;

   phiPatch = lapStencil(phiPatch) on  
   a_phi.getBox(dit());

  }

};

� := �h(�5)
�

�h

Generated%code%from%DSL%

Too%Complex%for%Users%to%Write%
%%%%(That%is%code%in%the%background)%

%

4th%order%stencil%computa,on%from%

CNS%Co\Design%Proxy\App%%

107Level7Sokware7Managed7Cache7
Code7generated7from7DSL7

Automa,cally%generated%code:%

•  500+%lines%of%op,mized%code%

•  10%levels%of%memory%hierarchy%

•  MPI%used%at%highest%level%

•  Op,mized%for%Many\Core%

•  9%levels%of%sodware%managed%

cache%memory%levels%

•  Op,mized%for%NUMA%architecture%

•  lowest%level%vectorized%

•  Developed%using%SNL%SST%Micro%

Exascale%Architecture%Simulator%

47Level7Hand7Wri"en77

Sokware7Managed7Cache7Example7



•  Trend:7increasing7localiza6on7of7data7movement7
–  More%NUMA%domains%(now%within%the%chip)%

–  Higher%cost%of%moving%off\chip%

–  On%Cori,%we%can%ignore%with%some%modest%cost%%

•  Observa6ons7
–  This%is%physics%(not%architecture),%so%hard%to%change%
–  NUMA%memory%locality%different%than%NUMA%on%chip%(both%worse)%

•  What7Apps7teams7should7think7about7
–  Need%to%think%about%how%you%can%express%your%algorithm%and%data%

layouts%in%a%way%that%maps%easily%to%a%2D%array%of%processor%elements%

within%a%chip.%

•  What7CS7teams7should7think7about7
–  How%can%we%provide%features%in%the%programming%environment%that%

automate%the%tedious%process%of%binding%data%&%work%to%specific%cores%

(pinning)%in%a%manner%that%is%constrained%by%topology%metadata%

Data7Locality7

35 
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•  Many Examples in library and DSL form 
•  HTA: Hierarchical Tiled Arrays 
•  TiDA: Tiling as a Durable Abstraction 
•  RAJA & KOKKOS: C++ Template Metaprogram Lib (many other examples!!) 

•  All arrived at similar underlying concepts 
•  Lamba functions to relax loop nest order 
•  Abstracts data physical layout from logical layout 

•  When many different projects independently arrive at the same or 
very similar solutions 

•  Perhaps they have found a reasonably optimal solution 
•  Its time to talk about standardization (MPI forum) 

•  For Tiling Abstractions, see PADAL  
 (Programming Abstractions for Data Locality) 
 http://www.padalworkshop.org/ 

Data Locality Abstractions 
(is it time for standardization?) 

1/23/

2013%

Computa,onal%Research%Division%|%Lawrence%Berkeley%

Na,onal%Laboratory%|%Department%of%Energy%
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Moving towards Global Address Space and 
MPI3 RMA 

Light(er)weight Messaging 



•  Trend:  
•  Network/NIC bandwidth scaling, but per-core performance NOT. 
•  Simpler cores take longer to run MPI protocol stack (NOC ingress issues) 

•  Challenge 
•  Wimpy cores present challenge to current threads/MPI relationship 

•  One rank per chip creates amdahl bottleneck 
•  Adding ranks per chip creates challenge for strong scaling 

•  Solutions 
•  Lighter weight communication protocols (e.g. PGAS) 
•  Side-cores (Thor or BG/Q MPI) 
•  All processors as peers in communication (e.g. MPI thread multiple) 
•  Direct message queues between all processors (hardware support) 

•  Intel direct msg queues, AMD XTQ, NVIDIA malleable memory (can you use 
these features?) 

•  What applications teams should think about 
•  What is your high-level abstractions for communication? (e.g. halo exchange) 
•  Can it be extended to work with these different comm options? (PGAS, side-

core, direct message queues, all threads as peers) 
•  Which path is most effective and most maintainable in the long term 

•  CS teams: already deeply involved in this area 

Communications 



Communica6on7(MPI+OMP7vs.71+sided7RMA)7

i (unit stride) i (unit stride)

send 
buffers 

recv 
buffer 

box 2 
(remote) 

box 0 
(local) 

box 3 
(remote) 

1 3 2 4 
box 1 

(remote) 

1 

2 

3 

4 recv 
buffer 

i (unit stride) i (unit stride)

box 2 
(remote) 

box 0 
(local) 

box 3 
(remote) 

box 1 
(remote) 

1 

1 

• MPI 2-sided requires 4 steps to 
communicate ghost zones with 
neighbors for best performance* 

• OpenMP has no mechanism to 
handle multi-level memory 
hierarchy   

MPI+OpenMP7

• One-sided enables direct 
boundary exchange in only 1 step 
while delegating details to runtime 

• Global Addroptimizes for memory 
hierarchy with hierarchical teams, 
locales and recursive array tiling 

PGAS/GAS/MPI3rma7

*An alternative approach using MPI data types with fewer steps is possible but 
its performance is much slower than the 4-step approach. 

Yelick/Zheng:7LBNL7
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Beyond Bulk Synchronous 



•  Mo6va6on7
–  Many%sources%of%machine%performance%varia,on%(e.g.%power%

management,%failure%recovery,%conges,on….)%

–  Many%sources%of%algorithmic%varia,on%

–  Difficult%to%coordinate%1million%processors%to%do%the%same%thing%

simultaneously%(bulk%synchronous)%

•  Value7Proposi6on7
–  Describe%task%dependencies%and%have%the%computer%handle%the%

complex%scheduling%

–  Reduces%workload%on%user%to%manage%the%scheduling%(we%use%bulk%

sync%because%it%requires%less%thought…%)%

•  Implementa6ons7
–  OCR:%%Intel’s%open%community%run,me%(serves%mul,ple%impls.)%

–  HPX:%%Indiana/LSU%(Sterling),%slated%to%be%part%of%C++17%standard.%
–  Charm++:%%Pre\dates%MPI%%%%%%<%and%many%others%>%

Looking7Beyond7Bulk7Sync7

41 



Performance7Heterogeneity7

42 

•  Heterogeneous compute engines 
(hybrid/GPU computing) 

•  Fine grained power mgmt. makes 
homogeneous cores look 
heterogeneous 
•  thermal throttling – no longer guarantee 

deterministic clock rate 
•  Nonuniformities in process technology 

creates non-uniform operating 
characteristics for cores on a CMP 
•  Near Threshold Voltage (NTV) 

•  Fault resilience introduces inhomogeneity in 
execution rates 

•  error correction is not instantaneous 
•  And this will get WAY worse if we move towards 

software-based resilience 

1/23/

2013%

Bulk Synchronous Execution 



Performance7Heterogeneity7

43 

•  Heterogeneous compute engines 
(hybrid/GPU computing) 

•  Fine grained power mgmt. makes 
homogeneous cores look 
heterogeneous 
•  thermal throttling – no longer guarantee 

deterministic clock rate 
•  Nonuniformities in process technology 

creates non-uniform operating 
characteristics for cores on a CMP 
•  Near Threshold Voltage (NTV) 

•  Fault resilience introduces inhomogeneity in 
execution rates 

•  error correction is not instantaneous 
•  And this will get WAY worse if we move towards 

software-based resilience 

Bulk Synchronous Execution 



Near7Threshold7Voltage7(NTV):7Shekhar!Borkar!(Intel)!
The!big!opportuni4es!for!energy!efficiency!require!codesign!!

44 

•  Heterogeneous compute engines (hybrid/
GPU computing) 

•  Fine grained power mgmt. makes 
homogeneous cores look heterogeneous 
•  thermal throttling – no longer guarantee deterministic 

clock rate 
•  Nonuniformities in process technology 

creates non-uniform operating 
characteristics for cores on a CMP 
•  Near Threshold Voltage (NTV) 

•  Fault resilience introduces inhomogeneity in 
execution rates 

•  error correction is not instantaneous 
•  And this will get WAY worse if we move towards software-based 

resilience 

Computa,onal%Research%Division%|%Lawrence%Berkeley%

Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution 
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•  Trend7
–  Sources%of%performance%nonuniformity%are%increasing%

–  Unclear%if%overheads%and%complexity%overwhelm%benefits%(adding!async!
to!loadBbalanced!code!just!adds!overhead)!

•  Challenge7
–  This%is%architectural%(you%can%turn%it%off%poten,ally)%
–  But%if%you%DO%turn%it%off,%then%you%will%pay%a%cost%in%both%energy%

efficiency%and%performance%(lowest%common%denominator)%

•  What7applica6ons7teams7should7think7about7
–  Can%your%algorithm%be%reformulated%to%tolerate%performance%non\

uniformity%(that%is%predictable?%%That%is%unpredictable?)%

–  Need%new%algorithms%(this%is%not%a%straight%port)%

–  need%this%to%conduct%the%experiment…%(don’t%think%about%this%as%

presupposing%the%solu,on)%

•  What7CS7teams7should7think7about7
–  If%you%have%some%good%examples%of%async%algorithms%can%you%develop%a%

model%that%determines%what%the%right%trade\off%is%between%run,me%

scheduling%overheads%

Performance7Heterogenity7

45 



Assump6ons7of7Uniformity7is7Breaking7
(many'new'sources'of'heterogeneity)7

Computa,onal%Research%Division%|%Lawrence%Berkeley%

Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution Asynchronous7/7DAG7Execu6on7Model7



•  Bulk7Synchronous:7Most7of7the7
exis6ng7HPC7universe7

•  Sta6c7Dataflow7schedule:7
PLASMA/MAGMA7

•  Semi+sta6c7schedule:77Most7
AMR7libraries7(Chombo,7BoxLib)7

•  Full7Dynamic7Schedule:7OCR,7
HPX,7Charm++7

DAG7Scheduling7Doesn’t7Need7to7be7Dynamic7
to7be7useful7

47 



Opportuni6es7for7Asynchronous7Execu6on7

48 
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Pipelining: Cholesky Inversion 

3 Steps: Factor, Invert L, Multiply L’s 
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Pipelining: Cholesky Inversion 

3 Steps: Factor, Invert L, Multiply L’s 
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Bulk%Synchronous%

(current%prac,ce)%

Asynchronous%%/%DAG%Model%/%sta,c%schedule%

(produc,on%interface%is%s,ll%topic%of%research)%

Finding%General%Purpose%programming%model%

to%express%these%constructs%requires%research.%

%

Clear%that%OMP4%tasking%model%is%not%a%

produc,ve%way%to%express%DAGs%(not%for%

domain%scien,sts%at%least,%but%could%be%the%

underlying%model%used%by%a%library%or%pmodel)%



Execu6on7Models7(what'the'heck'is'it?)'

•  What7is7the7parallelism7model?7

•  How7do7we7balance7produc9vity7and7implementa9on'efficiency'

•  Is7the7number7of7processors7exposed7in7the7model7

•  How7much7can7be7hidden7by7compilers,7libraries,7tools?7

Examples of parallel execution models 
SPMD 

barrier 

barrier 

barrier 

Dynamic Threads 
fork 

fork 

join 

join 

Event-Driven Vector 
Op 

Op 
Op 

Op 
Op 

Op 



•  Where are we now 
•  KNL:  2 x 8 DP word SIMD 
•  GPU: 16-32 DP word SIMT 

•  Trend: slow to no growth 
•  Challenge 

•  Compilers do terrible job of SIMD and provide little feedback 
•  Q: Why do I care?  My code is bandwidth limited? 
•  A: Because load-store also depends on SIMD (will greatly limit your 

L1 Load/store bandwidth if not SIMD’ized). 
•  What applications teams should think about 

•  Good news is SIMD supporting more vector-like constructs (so 
constraints may start to look more like old vectors) 

•  You know the drill ( C$IVDEP ) or ask Sam Williams 
•  What should CS teams think about? 

•  Do way have a play here? (is this primarily code generation?) 
•  Can we create tools that provide more feedback than existing tools/

compilers?  

SIMD 



•  Trend: 
•  Hard to tell if there is a trend 
•  Its obviously getting harder, but data is stochastic 
•  Issue is that we think about it all wrong 

•  Challenge 
•  You don’t know where the failures will occur.  Must plan for them to 

occur anywhere 
•  Software bugs sometimes indistinguishable from HW failures 
•  Titan sysadmin example 

•  Applications teams 
•  Can you add features to catch errors (right now we don’t look) 
•  How do you currently respond to errors or isolate them 
•  How can I find out the root cause for errors (debuggability). 

•  CS teams 
•  What can we do to automate identification of errors and prevent 

propagation of tainted information (CD has a lot of blanks that need 
to be filled in) 

•  Techniques for isolating errors are tedious (can we automate them?) 

Resilience 



•  Trend:77
–  More%kinds%of%memory%with%more%diverse%characteris,cs%

–  Not%like%cache%(NVRAM%for%example%cannot%easily%be%treated%as%just%

another%level%of%the%memory%hierarchy)%

–  Last%level%of%memory%just%got%a%LOT%slower%

–  Fast%DRAM%is%a%one\,me%hit%(0.01%bytes/flop),%but%might%be%stable%

•  What7applica6ons7teams7should7think7about7
–  Can%you%use%the%high\capacity%slow%DRAM%(eventually%NVRAM)%at%all?%%

(is%0.01%bytes/flop%bandwidth%just%too%slow?)%

–  Can%you%live%with%0.01%bytes/flop%capacity?%(can%get%you%the%bandwidth)%
–  Or%perhaps%we%should%just%IGNORE%the%slower%memory%(less%complex)%

•  What7CS7teams7should7think7about7
–  Can%we%automate%data%mo,on%&%assignment%for%these%memory%spaces?%%

(can%we%treat%it%like%a%cache?)%

–  If%not,%what%interfaces%should%we%be%providing%to%our%apps%programmers%

to%make%use%of%these%spaces?%%(this%is%not%rocket%science…)%

Memory7Spaces7

52 
Computa,onal%Research%Division%|%Lawrence%Berkeley%
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•  Sources7of7performance7heterogeneity7increasing7
–  Heterogeneous%architectures%(accelerator)%
–  Thermal%throkling%

–  Performance%heterogeneity%due%to%transient%error%recovery%

7
•  Current7Bulk7Synchronous7Model7not7up7to7task7

–  Current%focus%is%on%removing%sources%of%performance%varia,on%

(jiker),%is%increasingly%imprac,cal%

–  Huge%costs%in%power/complexity/performance%to%extend%the%life%

of%a%purely%bulk%synchronous%model'

Embrace'performance'heterogeneity:''Study'use'of'asynchronous'
computa9onal'models'(e.g.'SWARM,'HPX,'and'other'concepts'
from'1980s)'

Conclusions7on7Heterogeneity7



•  Programming7Models7are7a7Reflec6on7of7the7Underlying7Machine7
Architecture7
–  Express!what!is!important!for!performance!

–  Hide!complexity!that!is!not!consequen4al!to!performance!

•  Programming7Models7are7Increasingly7Mismatched7with7
Underlying7Hardware7Architecture7
–  Changes!in!computer!architecture!trends/costs!

–  Performance!and!programmability!consequences!

•  Technology7changes7have7deep7and7pervasive7effect7on7ALL7of7our7
sokware7systems7(and'how'we'program'them)'

•  Change!in!costs!for!underlying!system!affect!what!we!expose'

•  What!to!virtualize'

•  What!to!make!more!expressive/visible'

•  What!to!ignore'

The7Programming7Systems7Challenge7



•  Changing7Hardware7is7very7expensive7and7takes7a7long7lead76me7

•  Changing7Sokware7(rewri6ng7our7codes)7is7very7expensive7and7
takes7a7long7lead76me7

•  Codesign7is7quan6ta6ve7trade+offs7analysis7because7in7a7cost7and7
power7constrained7environment,7you7need7to7know7what7you7are7
wiling7to7give7up7to7get7what7you7want.7777
–  Easy%to%ask%for%more%features%or%BW%to%be%added%to%the%machine%

–  It%is%much%harder%to%evaluate%what%you%are%willing%to%give%up%

–  par,cularly%when%the%cost%func,ons%are%highly%non\linear%and%machines%

do%not%yet%exist%(need%models)%

•  CoDesign7center7modeling7and7evalua6on7approach7is7focused7on7
providing7quan6ta6ve7informa6on7about7those7cost7trade+offs7to7
enable7ra6onal7and7thoughpul7decision7making7for7both7code7teams7
and7for7our7industry7partners7who7will7be7developing7the7machines7
that7run7those7codes.77(risk'mi9ga9on'for'expensive'decisions)'

The7Importance7of7Codesign7

55 



•  Emerging7hardware7constraints7are7increasingly7mismatched7with7our7
current7programming7paradigm7

–  Current%emphasis%is%on%preserving%FLOPs%

–  The%real%costs%now%are%not%FLOPs…%it%is%data%movement%

–  Requires%shid%to%a%data\locality%centric%programming%paradigm%and%hardware%features%

to%support%it%

•  Technology7Changes7Fundamentally7Disrupt7our7Programming7
Environments7
–  The%programming%environment%and%associated%“abstract%machine%model”%is%a%

reflec,on%of%the%underlying%machine%architecture%%

–  Therefore,%design%decisions%can%have%deep%effect%your%en,re%programming%

paradigm%

–  The%BIGGEST%opportuni,es%in%energy%efficiency%and%

performance%improvements%require%HW%and%SW%considered%

together%(codesign)%

•  Performance7Portability7Should7be7Top+Tier7Metric7for7codesign7
–  Know%what%to%IGNORE,%what%to%ABSTRACT,%and%what%to%make%more%EXPRESSIVE7

Conclusions7



The7End7
For7more7informa6on7go7to7

7h"p://www.cal+design.org/7
77
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Interconnects 

Technology Trends and Effects on Application 
Performance 
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Scalable7Interconnects7

•  Can’t7afford7to7con6nue7with7Fat+
trees7or7other7Fully+Connected7
Networks7(FCNs)7

•  But7will7Ultrascale7applica6ons7
perform7well7on7lower7degree7
networks7like7meshes,7hypercubes7or7
torii.7Or7high+radix7routers/tapered7
dragonfly?'

•  How7can7we7wire7up7a7custom7
interconnect7topology7for7each7
applica6on?7
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Interconnect7Design7Considera6ons77
for7Message7Passing7Applica6ons7

•  Applica6on7studies7provide7insight7to7
requirements7for7Interconnects7(both7
on+chip7and7off+chip)7
–  On\chip%interconnect%is%2D%planar%

(crossbar%won’t%scale!)%

–  Sparse%connec,vity%for%most%apps.;%

crossbar%is%overkill%

–  No%single%best%topology%
–  Most%point\to\point%message%exhibit%

sparse%topology%+%oden%bandwidth%

bound%

–  Collec,ves%,ny%and%primarily%latency%

bound%

•  Ul6mately,7need7to7be7aware7of7the7on+
chip7interconnect7topology7in7addi6on7
to7the7off+chip7topology7
–  Adap,ve%topology%interconnects%(HFAST)%

–  Intelligent%task%migra,on?%
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Interconnect7Design7Considera6ons77
for7Message7Passing7Applica6ons7

•  Applica6on7studies7provide7insight7to7
requirements7for7Interconnects7(both7
on+chip7and7off+chip)7
–  On\chip%interconnect%is%2D%planar%

(crossbar%won’t%scale!)%

–  Sparse%connec,vity%for%most%apps.;%

crossbar%is%overkill%

–  No%single%best%topology%
–  Most%point\to\point%message%exhibit%

sparse%topology%+%oden%bandwidth%

bound%

–  Collec,ves%,ny%and%primarily%latency%

bound%

•  Ul6mately,7need7to7be7aware7of7the7on+
chip7interconnect7topology7in7addi6on7
to7the7off+chip7topology7
–  Adap,ve%topology%interconnects%(HFAST)%

–  Intelligent%task%migra,on?%

Opportunity%



CCSM7Performance7Variability7
(trials'of'embedding'communica9on'topologies)'

•  Result7of73117runs7of7the7coupled7climate7model7showing7model7
throughput7as7a7func6on7of7comple6on7date.7

Data%from%Harvey%Wasserman%

COV%~9%%



Node7placement7of7a7fast,7average7and7slow7run7

Fast7run:79407seconds7 Slow7run:724627seconds7Average7run:711007seconds7

Y=87

X=177

Z=247

from'Ka9e'Antypas'



Node7placement7of7a7fast,7average7and7slow7run7

Fast7run:79407seconds7 Slow7run:724627seconds7Average7run:711007seconds7

Y=87

X=177

Z=247

from'Ka9e'Antypas'

Failure!to!exploit!

opportunity!

(when!virtualiza4on!of!

topology!goes!wrong)!



Topology7Op6miza6on7
(turning!FatBtrees!into!FitBtrees)!

•  A7Fit+tree7uses7OCS7to7prune7
unused7(or7infrequently7used)7
connec6ons7in7a7Fat+Tree7

•  Tailor7the7interconnect7
bandwidth7taper7to7match7
applica6on7data7flows7

65 
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It will work, 
But there are some things we could do better 

(a LOT better) 

Whats wrong with MPI3+OMP4 
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Old Model (Parallel DO and life was good) 

8 OpenMP API • Version 4.0.0 - November 2013

Fortran
Example 1.1f

    SUBROUTINE SIMPLE(N, A, B)

      INTEGER I, N
      REAL B(N), A(N)

!$OMP PARALLEL DO  !I is private by default
      DO I=2,N
          B(I) = (A(I) + A(I-1)) / 2.0
      ENDDO
!$OMP END PARALLEL DO

Fortran
    END SUBROUTINE SIMPLE



Expressing7Hierarchical7Layout7

•  Old7Model7(OpenMP)7
–  Describe%how%to%parallelize%loop%itera,ons%
–  Parallel%“DO”%divides%loop%itera,ons%evenly%among%

processors%

–  .%.%.%but%where%is%the%data%located?%%

•  New7Model7(Data+Centric)7also'in'big'data'
–  Describe%how%data%is%laid%out%in%memory%

–  Loop%statements%operate%on%data%where%it%is%located%

–  Similar%to%MapReduce,%but%need%more%sophis,cated%

descrip,ons%of%data%layout%for%scien,fic%codes%

forall_local_data(i=0;i<NX;i++;A) 

C[j]+=A[j]*B[i][j]);

68 



OpenACC Example (directives in red) 
John Levesque presentation 

\%69%\%

Cray Inc. SNL Workshop Apr 9-11 

!$acc data copyin(cix,ci1,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,ci10,ci11,& 
!$acc& ci12,ci13,ci14,r,b,uxyz,cell,rho,grad,index_max,index,& 
!$acc& ciy,ciz,wet,np,streaming_sbuf1, & 
!$acc&    streaming_sbuf1,streaming_sbuf2,streaming_sbuf4,streaming_sbuf5,& 
!$acc&    streaming_sbuf7s,streaming_sbuf8s,streaming_sbuf9n,streaming_sbuf10s,& 
!$acc&    streaming_sbuf11n,streaming_sbuf12n,streaming_sbuf13s,streaming_sbuf14n,& 
!$acc&    streaming_sbuf7e,streaming_sbuf8w,streaming_sbuf9e,streaming_sbuf10e,& 
!$acc&    streaming_sbuf11w,streaming_sbuf12e,streaming_sbuf13w,streaming_sbuf14w, & 
!$acc&    streaming_rbuf1,streaming_rbuf2,streaming_rbuf4,streaming_rbuf5,& 
!$acc&    streaming_rbuf7n,streaming_rbuf8n,streaming_rbuf9s,streaming_rbuf10n,& 
!$acc&    streaming_rbuf11s,streaming_rbuf12s,streaming_rbuf13n,streaming_rbuf14s,& 
!$acc&    streaming_rbuf7w,streaming_rbuf8e,streaming_rbuf9w,streaming_rbuf10w,& 
!$acc&    streaming_rbuf11e,streaming_rbuf12w,streaming_rbuf13e,streaming_rbuf14e, & 
!$acc&    send_e,send_w,send_n,send_s,recv_e,recv_w,recv_n,recv_s) 
  do ii=1,ntimes 
         o o o  
      call set_boundary_macro_press2 
      call set_boundary_micro_press 
      call collisiona 
      call collisionb 
      call recolor 

84 



OMP4 example (from OMP4 docs) 

\%70%\%

172 OpenMP API • Version 4.0.0 - November 2013

subroutine vec_mult(p, v1, v2, N)
   real    ::  p(N), v1(N), v2(N)
   integer ::  i
   call init(v1, v2, N)
   !$omp target data map(to: v1, v2) map(from: p)
   !$omp target
   !$omp parallel do
      do i=1,N

 p(i) = v1(i) * v2(i)
      end do
   !$omp end target
   !$omp end target data
   call output(p, N)

Fortran
end subroutine

target data Region Enclosing Multiple 
target Regions
The following examples show how the target data construct maps variables to a 
device data environment of a target region. The target data construct creates a 
device data environment and encloses target regions, which have their own device 
data environments. The device data environment of the target data region is 
inherited by the device data environment of an enclosed target region. The target 
data construct is used to create variables that will persist throughout the target 
data region.

In the following example the variables v1 and v2 are mapped at each target 
construct. Instead of mapping the variable p twice, once at each target construct, p is 
mapped once by the target data construct.

C/C++
Example 49.2c

extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
   int i;
   init(v1, v2, N);
   #pragma omp target data map(from: p[0:N])
   {
      #pragma omp target map(to: v1[:N], v2[:N])
      #pragma omp parallel for
      for (i=0; i<N; i++)



And you have to do this for  
EVERY SINGLE LOOP! 

\%71%\%

OpenMP Examples 179

extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
   int i;
   init(v1, v2, N);
   #pragma omp target data if(N>THRESHOLD) map(from: p[0:N])
   {
      #pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
      #pragma omp parallel for
      for (i=0; i<N; i++)
        p[i] = v1[i] * v2[i];
      init_again(v1, v2, N);
      #pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
      #pragma omp parallel for
      for (i=0; i<N; i++)
        p[i] = p[i] + (v1[i] * v2[i]);
   }
   output(p, N);

C/C++
}

Fortran
Example 49.6f

The if clauses work the same way for the following Fortran code. The target 
constructs enclosed in the target data region should also use an if clause with the 
same condition, so that the target data region and the target region are either 
both created for the device, or are both ignored.

module params
integer,parameter :: THRESHOLD=1000000
end module
subroutine vec_mult(p, v1, v2, N)
   use params
   real    ::  p(N), v1(N), v2(N)
   integer ::  i
   call init(v1, v2, N)
   !$omp target data if(N>THRESHOLD) map(from: p)
      !$omp target if(N>THRESHOLD) map(to: v1, v2)
         !$omp parallel do
         do i=1,N
            p(i) = v1(i) * v2(i)
         end do
      !$omp end target
      call init_again(v1, v2, N)
      !$omp target if(N>THRESHOLD) map(to: v1, v2)
         !$omp parallel do
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MPI-3 RMA  
– DOES IT FIX ALL THE 
PROBLEMS? 

Yili Zheng  
FTG 

3/9/15 73 



MPI+37RMA7Window7Crea6on7

//"MPI"creates"a"Window"with"user4supplied"memory"
MPI_Win_create(base,"size,"disp_unit,"info,"comm,"
win)""
"
//"MPI"allocates"memory"and"creates"a"new"window"
MPI_Win_allocate(size,"disp_unit,"info,"comm,"
baseptr,"win)"
"
//"Create"a"dynamic"window"without"any"memory"
MPI_Win_create_dynamic(info,"comm,"win)"
//"Attach"memory"to"a"dynamic"window"
MPI_Win_attach(win,"base,"size)"
7
7
7

3/9/15 74 



Comple6on7and7Buffer7Ownership7for7Non+
blocking7RMA7Opera6ons7

3/9/15 
75 

Source%buffer% Dest.%buffer%
User%

owns%

buffers%

System%

owns%

buffers%

NB%op%starts% Local%comple,on% Remote%comple,on%



MPI7RMA7Opera6ons7Are7Non+Blocking7By7
Default!7

MPI_Put(origin_addr,"origin_count,"
origin_datatype,"target_rank,"target_disp,"
target_count,"target_datatype,"win)"
"
MPI_Get(origin_addr,"origin_count,"
origin_datatype,"target_rank,"target_disp,"
target_count,"target_datatype,"win)""
7
7
MPI_Win_flush(rank,"win)"/"
MPI_Win_flush_all(win)"
//7MPI_WIN_FLUSH7completes7all7outstanding7RMA7
opera6ons7ini6ated7by7the7calling7process7to7the7target7
rank7on7the7specified7window.77The7opera6ons7are7
completed7both7at7the7origin7and7at7the7target.77
" 3/9/15 76 

There!is!no!way!to!ensure!remote!comple4on!for!a!specific!

RMA!opera4on!!!See!PPoPP14!paper!on!CAF!on!MPIB3.!



How7I7Would7Implement7MPI_Put7with7
DMAPP7for7the7simple7cases7

If7the7data7type7is7con6guous7and7the7same7for7origin7and7target,7
it’s7very7easy7to7translate7the7arguments7from7MPI_Put7to7
dmapp_put_nbi.777
"
MPI_Put(origin_addr,"origin_count,"origin_datatype,"target_rank,"
target_disp,"target_count,"target_datatype,"win)"
"
dmapp_put_nbi("
""void"""""""""""""*target_addr,//"target_disp"
""dmapp_seg_desc_t"*target_seg,"//"win"
""dmapp_pe_t""""""""target_pe,""//"target_rank"
""void"""""""""""""*source_addr,//"origin_addr"
""uint64_t""""""""""nelems,"""""//"target_count"
""dmapp_type_t""""""type);""""""//"target_datatype"

3/9/15 77 



MPI7Request+Based7RMA7

MPI_Rput(origin_addr,"origin_count,"origin_datatype,"
target_rank,"target_disp,"target_count,"
target_datatype,"win,"request)"
"
MPI_Rget(origin_addr,"origin_count,"origin_datatype,"
target_rank,"target_disp,"target_count,"
target_datatype,"win,"request)"

MPI_Wait(request,"status)"//"only"guarantees"local"
completion"for"Rput,"still"need"to"call"MPI_Win_flush"
for"remote"completion!""

3/9/15 78 

Similar%to%UPC%non\blocking%

opera,ons%with%explicit%handles%



MPI+37RMA7locks7

MPI_Win_lock(lock_type,"rank,"assert,"win)"
MPI_Win_unlock(rank,7win)7
7
MPI_Win_lock_all(assert,7win)7
MPI_Win_unlock_all(assert,7win)7
7
MPI7locks7are7designed7for7access7epochs7and76ed7to7the7
whole7MPI7window.777
But'MPI'doesn’t'provide'the'equivalent'func9onality'of'

pthread_mutex_t'or'upc_lock_t,'which'is'cri9cal'to'

shared5memory'programming!'

'

7
"
"

3/9/15 79 



//"Create"shared4memory"communicators"
MPI_Comm_split_type(comm,"
MPI_COMM_TYPE_SHARED,"key,"info,"newcomm)"
"
//"Create"shared4memory"windows"
MPI_Win_allocate_shared(size,"disp_unit,"
info,"comm,"baseptr,"win)"
"
//"Get"a"local"ptr"for"a"remote"windows"
MPI_Win_shared_query(win,"rank,"size,"
disp_unit,"baseptr)""
//"Read"and"write"with"baseptr"
…7
7
7
7

MPI+37Shared7Memory7

3/9/15 80 

a.k.a.%MPI%+%MPI%



MPI+37Remote7(Atomic)7Updates7

MPI_Accumulate(origin_addr,"origin_count,"origin_datatype,"
target_rank,"target_disp,"target_count,"target_datatype,"
op,"win)"
"
"
MPI_Get_accumulate(origin_addr,"origin_count,"
origin_datatype,"result_addr,"result_count,"
result_datatype,"target_rank,"target_disp,"target_count,"
target_datatype,"op,"win)""
"
MPI_Fetch_and_op(origin_addr,7result_addr,7datatype,7target_rank,7
target_disp,7op,7win)7
MPI_Compare_and_swap(origin_addr,7compare_addr,7result_addr,7datatype,7
target_rank,7target_disp,7win)7
7
"

3/9/15 81 

No!userBdefined!opera4on!for!Accumulate.!!

Otherwise,!you!can!use!it!for!Ac4ve!Messages.!

☺!



Fine7Print7about7MPI_Accumulate7in7the7
MPI+37Spec7

•  “Thus,'there'is'no'guarantee'that'the'en9re'call'to'
an'accumulate'opera9on'is'executed'atomically.”'

•  “Different'interleavings'can'lead'to'different'results'
only'to'the'extent'that'computer'arithme9cs'are'not'

truly'associa9ve'or'commuta9ve.”'

•  '“Accumulate'calls'enable'element5wise'atomic'read'

and'write'to'remote'memory'loca9ons.”'

7

3/9/15 82 

You!may!get!elementBwise!nonBreproducible!

results!for!floa4ng!opera4ons!with!

MPI_Accumulate!!
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E X A S C A L E 
C O M P U T I N G

Exascale Computing Trends: 
Adjusting to the “New Normal”  
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time  
to take stock and look forward in terms of scaling models and their implications for  
future systems.

W e now have 20 years of data under 
our belt as to the performance of 
supercomputers against at least a 
single floating-point benchmark 

from dense linear algebra. Until approximately 
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for 
translating complex applications into reasonable 
parallel programs.

In 2004, however, a confluence of events 
changed forever the architectural landscape 
that underpinned MPI. Figure 1 summarizes 
the effects of these changes in terms of the 
year-over-year compound annual growth rate 
(CAGR) of several key system characteristics. 
This data, taken from an average of the top 
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance, 
in flops (floating point operations) per second, 
has grown consistently at about 1.9= per year. 
Before 2004, this growth came from a modest 
increase in the number of cores, coupled with 

substantial (50 percent or better per year) in 
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per 
year skyrocketed, while the average core clock 
growth disappeared, and memory per core even 
declined.

The first half of this article delves into the 
underlying reasons for these changes and what 
they mean to system architectures. The second 
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for 
programming and algorithm design in future 
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing 
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance 
and memory chip density increase exponen-
tially over time, the real statement is that a 
transistor’s key linear dimensions (its feature 
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk 
(meaning that more transistors can be placed 
on a die), and its inherent delay (due largely 
to the capacitance of its now smaller gate) has 
declined. The dimensional shrinkage has also 
been applied to the width of the wiring that 
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tectures and high-performance computing 
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance 
and memory chip density increase exponen-
tially over time, the real statement is that a 
transistor’s key linear dimensions (its feature 
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk 
(meaning that more transistors can be placed 
on a die), and its inherent delay (due largely 
to the capacitance of its now smaller gate) has 
declined. The dimensional shrinkage has also 
been applied to the width of the wiring that 
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•  Start7out7with7the7abstrac6on7

•  Implement7prototype7as7a7library7
–  Old\school:%%new%version%of%xxxPack%
–  New\(old)\school:%template%metaprogramming%

•  If7that7works,7can7smuggle7it7into7an7embedded7direc6ve7

•  If7that7works7push7it7into7the7language7standard7
–  It%works%

Process7to7get7new7ideas7adopted7
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Are7these7the7only7possible7AMMs?7
!

NO:!this!is!just!a!reflec4on!of!what!is!seen!developing!in!industry.!!

Specializa4on!&!other!architectures!possible.!!See!Sandia!XGC!Project!
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