Breakout Report

Research Questions for
Programming Environments

Session Chair: Martin Schulz

Lawrence Livermore National Laboratory

Breakout Questions

e What are the key research questions in
programming environments that must be
answered by the research community before
widespread development and adoption?

e |sthere an order and preferred method for
pursuing these?

What Tools Comprise the PE?

From workshop materials:

e Compilers

e Code transformation
e Code synthesis

e Code generation

e Debuggers
 Autotuning

* Runtime systems

e Workflow management
e Data analytics

e Visualization

e Storage management

Added during discussion:

Optimized libraries
Performance analysis and
visualization

Performance modeling
Correctness tools
Resilience tools

Software quality tools
Build-and-test frameworks
Virtualized testbeds

Possible Groupings

Code generation/compilation
Debugging/Correctness tools

Performance analysis/Optimization tools
Resilience tools

Storage management

Code/software management and workflows
Crosscuts / Overarching infrastructure

(Libraries — OWN WORKSHOP)
(Analysis and visualization tools — OWN WORKSHOP)
(Testbeds — YES, WE NEED THEM)

Code generation/compilation

e Research direction: Smarter compilers

— Example: Continuously optimizing compilation
* |n the background based on performance feedback
e Could also be used to dynamically change properties
e Doable for on-node only (?!)
 Makes debugging harder

— How feasible/costly is this?
— Faster/more parallel compilers

e Especially for new/complex features like templates

Debugging/Correctness tools

e Static e Dynamic
— Finding bugs before — How to deal with non-determinism?
We run e How difficult is it to enable determinism?

* How to get an “Off switch”?

— Challenge: debug at scale

* New automated techniques that make using
them easier in low availability scenarios

* Once in a while we need the interactive tools
— Gaps: too slow, too hard to use

* Testing frameworks

— How to debug at lower scale? On peta-flop
racks?

e Both * Verify results from lower scale tests

— Techniques to find scaling bugs before we run at scale
* |Implementation bugs in any kind of software/algorithm

— How to debug codes written in the new task models
 Example question: what is a global breakpoint?

— Visual debugging

Performance analysis/Optimization Tools

e Static * Dynamic
— How to get more feedback from — How to get feedback from runtimes and
compilers and how to use them in how to use them in an actionable way?
an actionable way? — How to deal with non-determinism?

— New metrics: energy, power, ...

— Performance analysis in the light of

system/app adaptivity at all layers
e Both ystem/app adaptivity y

— New representations for visual performance analysis
— Tools for detecting memory access patterns
* Good candidate for new visualization techniques

— Tools for remapping memory and re-tuning
e Static (before), Dynamic (for next run), Dynamic (on the fly)
* Separate data layout from computation (late mapping)

— Hardware support for custom memory remapping
* Requires detection and analysis to extract mappings, Example: 2D memory regions
* What are we willing to “pay” for it

— Tools to evaluate precision requirements

— Performance Modeling

— Tools to get us “goodness” metrics for matching codes to architectures
— Continuous data collection and analytics — long term trends

Resilience Questions

How to avoid global recovery

— A single failure shouldn’t break the complete system
(live recovery/migration and how to do this efficiently)

* What abstractions are good for individual applications?
* What abstractions are good for coupled workflows?

— What characteristics do we want in a resilient model
* Incl. MPI —how to hotswap or shrink?

What model is useful in which applications?

— How can we automate the geometry mapping so shrinking resources
can be used efficiently

How to optimize global checkpoints
— We need global checkpoints at some point
e Limited job time, ...
How transparent should resilience be?
— How far do/can/should/must we burden the programmer?
— What to expose to application level?

— How do new (tasking) models influence this?
* Is it easier (defined tasks) or harder (asynchronous execution)?

Storage Management
(beyond Checkpoint Storage)

e Integration into/definition of workflows
— Data sinks and sources

— Coupled simulations

— Automated decisions in resource managers and
runtimes
e Should be based on data usage and dependencies

e How does on-node / global NVRAM option
change this picture?
— Right abstractions/usage models/APls

e Abstractions for I/O & Storage (APIs)
— Are files the right answer?

Code/software tools and workflows

e Simpler tools for code complexity analysis
— Good tools available, but not HPC focused
— Too many false positives
— Scaling has to be added to commercial tools

e How to map parts of the workflow to the right resources?
— Flowing from capacity to capability and back

e Abstractions for I/O & Storage (flow)
— How to understand data flow through the I/O system
— Tag/Index data based on its properties
— Provenance
— How to manage large volume data

e [ntegration of continuous performance gathering into
regression suites

Crosscuts / Overarching infrastructure

Options for visual correctness and performance debugging

— Intersection between DataVis and InfoVis
* Scalability issue

— Watch algorithms/datastructures “evolve”
e At multiple levels (physics, DAGs, ...)

— Workflow integration necessary
Interfaces to runtime systems
— Getting performance/debug data
— Knobs to change performance properties
— Ability to tell systems they are doing well right now
— Especially important for adaptive systems
How to couple tools and components?
— Matching of runtimes
— Computational and analysis steering
— Resource management and coordination
Scalable infrastructures for vis, analysis, debugging, tools
— Get away from hacky scripts
— Data management without running everything through files

Question 2

e |sthere an order and preferred method for
pursuing these?
— No
— Short term vs. Long term issue for prioritization
e Within each challenge

— We need to work with existing (evolving) codes
and models now, but be ready for new models in
the future

