U.S. DEPARTMENT OF

W " &
~&)
/

S0

Office of
Science

Domain Specific Languages (DSLS)
for the Exascale Era

Lawrence Livermore National Laboratory:

MIT:

Rice University:

IBM Watson:

Ohio State University:

University of California at Berkeley:
University of Oregon:

Lawrence Berkeley National Laboratory:

University of California at San Diego:

National Laboratory

Lawrence Livermore

%' RICE

Daniel J. Quinlan

Saman Amarasinghe, Armando Solar-Lezama,
Adam Chlipala, Srinivas Devadas, Una-May O’Reilly,
Nir Shavit & Youssef Marzouk

John Mellor-Crummey & Vivek Sarkar
Vijay Saraswat & David Grove

P. Sadayappan & Atanas Rountev
Ras Bodik

Craig Rasmussen

Phil Colella

D-TEC

Scott Baden

-

OHIO

UNIVERSITY

DSLs will help Application Developers in Exascale

 We will show the effectiveness of DSLs
— Today will focus on one application domain: Stencil Computation
— You can extrapolate this methodology to other domains

e How to demonstrate the effectiveness?

Demonstrate best of class performance on current hardware
Demonstrate performance portability on existing hardware
Demonstrate productivity to hero level performance
Demonstrate how to overcome exascale challenges
Demonstrate how to extend to handle non-trivial app. evolution

Demonstrate verification for correctness

L -l o A A

Demonstrate a path from legacy apps. to the new DSL

|M Lawrence Livermore ...
H& DEPSHIMENT F18 Office of = ‘H RENonar Lahoraron _\

ENERGY science G Y ©RICE TEEE O

What is a Domain Specific Language?

e Embedded DSL
— Write the program like using a library in a familiar language
— Running the program = generate optimized routine
— Call that routine with the input data

#include "Halide.h" extern "C" { #include "halide_conv.h" }
using namespace Halide;

Image<uintl6_t> conv_halide(Image<uint16_t> in) {
Image<uintl6_t> out(in.width()-8, in.height()-2);

int main(int argc, char **argv) {

ImageParam input(UInt(16), 2);

Func conv_x("conv_x"), conv_y("conv_y"); . X
var x("x"), y("y"), xi("xi"), yi("yi"); halide_conv(in, out);

// The algorithm t out:
conv_x(x, y) = (input(x, y) + input(x+1, y) + input(x+2, y))/3; return outs
conv_y(x, y) = (conv_x(x, y) + conv_x(x, y+1) + conv_x(x, y+2))/3;

// How to schedule it
conv_y.split(y, y, yi, 8).parallel(y).vectorize(x, 8);
conv_x.store_at(conv_y, y).compute_at(conv_y, yi).vectorize(x, 8);

conv_y.compile_to_file("halide_conv", input);

return 0;

: | i ey
U.S. DEPARTMENT OF Office of = L hg‘gg?,’;?ﬂ-g‘éﬁ.g}’o";;‘* D -
ENERGY scence SRICE IE5:.0.

What is a Domain Specific Language?

e Embedded DSL

e Syntax Extended DSL
— Add new syntax to an existing language
— Or a new language for the domain

const grav = [0.0, -10.0, 0.0];

element Tet

u : float;

B : tensor[3,3](float);
end

extern tets : set{Tet}(verts, verts, verts, verts);

% assemble internal forces. Fixed vertices contribute
func compute_force(e : Tet, v : (Vert*4)) -> (f : tensor[verts](tensor[3](float)))
var Ds : tensor[3,3](float);
for ii in 0:3
for jj in @:3
Ds(jj,ii) = v(ii).x(3j)-v(3).x(3i);
end
end
end

proc main

h=0.01;

f = map compute_force to tets reduce +;
A =M - (h*h) * f;

end

= [i .,:“. " | BT - H - E i
o DERRIRENI IS & | Office of L P ctledigmadilogy I el 11O B
ENERGY s - TBEE O 1l B L)~
SCIGHC@ @R{CE S ==S5% onenon UNIVERSITY

What is a Domain Specific Language?

e Embedded DSL
e Syntax Extended DSL

e Library APl Enhancing DSL
— Chombo data abstractions (used in Shift Calculus)

M Lawrence Livermol

Ofﬁce Of *[’}V l National Lab rator; ey

SEwd, U.S. DEPARTMENT OF s « T o H - E
@ ENERGY sciorce 5 -
RS SCIGnCe e ;,':,jj,‘_f;*‘\ @ R[CE i; ==?—E ol UNIVERSITY

What is a Domain Specific Language?

e Embedded DSL
e Syntax Extended DSL

e Library APl Enhancing DSL
 Language restriction DSL

— C with no aliasing (#pragma restrict)

— Restrictions on the semantics of indirect addressing of the
loops, which allows for more optimizations (ROSE autopar tool)

%>, U.S. DEPARTMENT OF Office of W

L
@ ENERGY o ' i

Outline of the D-TEC DSL Flow

Front End Syntax extension framework

— Multi-level memory hierarchy optimization
Higher-order stencil optimization
Data-flow analysis/optimizations
Intermediate Eolyhedrql Optimizations

. — Loop Optimization
Representation Vectorization
Parallelization
Transformation synthesis by example
Autotuning based optimization selection

Backend Code Correctness Verification

Generatior

NUMA cores GPUs Dist. Mem. SST Simulator

A’\‘“\),,_.f

B Lawrence Livermore .'.
U.S. DEPARTMENT OF Of‘f|ce 0 ,57."? :\?g National Laboratory ___ I l I
R o) —_———
ENERG I Science i BJRICE === .O..

Halide DSL

 An example of an embedded DSL
e Originally developed for Image Processing

— Very successful in that domain

g+
4 Enhance

Al

Adobe
— Lot of investment in engineering a production-quality system

e 10+ full-time engineers developing the Halide system
e 50+ full-time engineers generating Halide with > 20 kLOC in production

* Applicable to many HPC stencil problems

|l Lawrence Livermore ...
% U.S. DEPARTMENT OF Offlce Of FEH L National Laboratory _j\

@ ENERGY Science 1| D RICE EIEE:

e s OHEGO“

Example

A simple 2D Convolution

void seperable convolve(const Buffer &in, Buffer &convy) {
Buffer convx(in.width(), in.height());

for(int y = @; y < in.height(); y++)
for(int x = 0; x < in.width(); x++)
convx(x,y) = (in(x-1,y)+in(x,y)+in(x+1,y))/3

for(int y = 0; y < in.height(); y++)
for(int x = 0; x < in.width(); x++)
convy(x,y) = (convx(x-

1,y)+convx(x,y)+convx(x+1,y))/3

Convolve Row

ke | ka | kg | Ky | ks
input intermediate
Convolve Column
k1| k1 | k1
k2 k2 k2
k3 k3 k3

intermediate

&_ Lawrence Livermore

U.S. DEPARTMENT OF Offlce Of National Laboratory

ENERGY Science

| % RICE Egé?:

oRre

1lrl

]\.‘ IVERSITY

cOon

Example

[A Simple ZD conVOIUtion void (const Buffer &in, Buffer &convy) {

__m128i one_third = _mm_setl_epil6(21846);
void seperable convolve(const Buffer &in, Buffer &convy) { #pragma omp parallel for
Buffer convx(in.width(), in.height()); for (int.yTile = 9; yTile < in.height(); yTile += 32) {
__m128i a, b, c, sum, avg;
__m128i convx[(256/8)*(32+2)]; // allocate tile convx array
-For\(int y = @; y < in-height(); y++) for (int xTile = @; xTile < in.width(); xTile += 256) {
. . . _ m128i *convxPtr = convx;
for(int x = 0; x < in.width(); x++) For (inty = -1; y < 32415 ya4) {
convx(x,y) = (in(x-1,y)+in(x,y)+in(x+1,y))/3 const uintl6_t *inPtr = &(in[yTile+y][xTile]);
for (int x = 9; x < 256; x += 8) {
a = _mm_loadu_sil28((__m128i*)(inPtr-1));

'For\(lnt y = H y < 1n-he1ght(); y‘H') b = _mm_loadu_sil28((__m128i*)(inPtr+1));
for(int x = 0; x < in.width(); x++) c = _mm_load_si128((__m128i*)(inPtr));
= dd_epile(_mm_add_epil6(a, b), c);
convy (x = (convx(x-1,y)+convx(x,y)+convx(x+1 3 sum = _nm_add_ ~mn_add_
y(“'y) (("y) (“'y) (’y))/ avg = _mm_mulhi_epil6(sum, one_third);
} _mm_store_sil28(convxPtr++, avg);
inPtr += 8;

}

e Hand Optimized C++)

convxPtr = convx;

_ 1 for (inty = 0; y < 32; y++) {
Tlled _ m128i *outPtr = (_ m128i *)(&(convy[yTile+y][xTile]));
_ Fused 11Xfa$ter for (int x = 9; x < 256; x += 8) {
(quad core X86) b = _mm_load_sil28(convxPtr+256/8);

c = _mm_load_sil28(convxPtr++);
— IVI u |tith readed avg = _mm_mL.thi_ep116(sum, oneTthir‘d);
mm_store_sil28(outPtr++, avg);
— Redundant computation ,

a = _mm_load_sil28(bconvxPtr+(2*256)/8);
— Vectorized

sum = _mm_add_epil6(_mm_add_epil6(a, b), c);
— Near roof-line optimum)

B Lawrence Livermore ...
National Laboratory

R, U.S. DEPARTMENT OF Office of

%) ENERGY sconce J)- 10

Halide Approach

 Decouple Algorithm and Schedule

e Algorithm: What is computed
convx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
convy(X, y) = (convx(x, y-1) + convx(X, y) + convx(x, y+1))/3;

e Schedule: Where and When it is computed

— Separate scheduling language /\
— Can describe how to execute redundant]
work locality

the algorithm

— Represent a large, complex
search space

parallelism

g |/® Lawrence Livermore
Y W‘T National Laboratory =
?

U.S. DEPARTMENT OF Offlce Of 5 D
@ ENERGY Science % - 11

/ ;ﬁ«

%R{CE TE:-—-‘ v." 8

Schedule language create many organizations

conv_x.compute_at_root()

redundant

locality
work

parallelism

conv_x.compute_at(convy, x)
.vectorize(x, 4)

conv_y.tile(x, y, xi, yi, 8, 8)
.parallel(y)
.vectorize(xi, 4)

redundant locality
work

parallelism

conv_x.compute_at(convy, x)

redundant locality
worl

parallelism

conv_x.compute_at(convy, y)
.store_at_root()
.split(x, x, xi, 8)
.vectorize(xi, 4)
.parallel(x)

conv_y.split(x, x, xi, 8)
.vectorize(xi, 4)
.parallel(x)

redundant locality
work

parallelism

conv_x.compute_at(convy, Xx)
.store_at_root()

redundant locality
work

parallelism

conv_x.compute_at(convy, y)
.store_at(convy, yi)
.vectorize(x, 4)

conv_y.split(y, y, yi, 8)
.parallel(y)
.vectorize(x, 4)

redundant locality
work

parallelism

Schedule language create many organizations

redundant locality redundant locality redundant locality
work [2] work! work

parallelism parallelism parallelism

redundant locality redundant locality redundant locality
work work work

parallelism parallelism parallelism

How to demonstrate the effectiveness of DSLs?

Demonstrate best of class performance on current hardware
Demonstrate performance portability on existing hardware
Demonstrate productivity to hero level performance
Demonstrate how to overcome exascale challenges
Demonstrate how to extend to handle non-trivial app. evolution

Demonstrate verification for correctness

N o Uk W e

Demonstrate a path from legacy apps. to the new DSL

. |H Lawrence Livermore»
 U.S. DEPARTMENT OF Offlce Of e { National Laboratory

@ ENERGY sicr. ' gmiicr 1832 0. g D- u

1. Demonstrate best of class performance on current hardware

HPGMG miniapp on Halide « Optimized C code to Halide

— Porting the algorithm was quick and
straightforward

 Halide performance
— Autogenerated schedule for CPU

1.8

173
L2173
413
L8173
w1673
3273
0.6 - - L 6473
12873
25673

Execution Time

e Halide Schedule

— auto-generated by autotuning with opentuner
— Or hand created by an optimization expert

Original Halide CPU

|™ Lawrence Livermore ...y H I PR
d National Laboratory 15
_ === O 1l B -
UNIVERSITY

oRrREGON

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science

2. Demonstrate performance portability on existing hardware

HPGMG miniapp on Halide « Optimized C code to Halide
e Original program (C /w OpenMP) — Porting the algorithm was quick and
T S e o straightforward

 Halide performance
— Autogenerated schedule for CPU
— Hand created schedule for GPU
— No change to the algorithm

1.8
. . 173
e Halide Algorithm I3
— Created by a domain expert _4,\3
— o [
E w8h3
S w1673
3 W 3273
S
Ll
. L 6413
e Halide Schedule e
— auto-generated by autotuning with opentuner N
— Or hand created by an optimization expert
U.S. DEPARTMENT OF Office Of L] hg‘gg%g?ﬂ-{i)vo?g{;%e \ I II H - E D P
ENERGY science BRICE E=5: O, QUALE -

3. Demonstrate productivity to hero class performance

Input COPY N COPY Output

Local Laplacian Filter on Halide ot [] B

In Adobe Photoshop, Camera Raw / Lightroom]efl’f’i’m. .DDA DOWN
DOWN‘ UP . A\
DDA

ADD

Reference: 300 lines C++ "‘ _D;Wa)UP. |DOWN UP\

AdObe The algorithm uses 8 pyramid levels

4
DDA. o B . _}.
COPY

Adobe: 1500 lines
3 months of work
10x faster (vs. reference)

Halide: 60 lines
1 intern-day

20x faster (vs. reference)
2x faster (vs. Adobe)

GPU: 90x faster (vs. reference)
9x faster (vs. Adobe)

M Lawrence Livermore ...
» U.S. DEPARTMENT OF Office Of 5 - National Laboratory _\

@ ENERGY Science

_= oRrREGON

4. Demonstrate how to overcome exascale challenges

e MSL: Synthesis-Enabled DSL for Distributed Implementations
— Make writing complicated distributed

M H H Transpose (1D Decomp) Transpose (2D Decomp)
kernels easier by using synthesis L
& 200 - Fortran -0 4 L Fortran =& |
— Programmers provide serial spec, 1 -
. IS T I
parallel skeleton & description of 1 i
. . . g i Tooe] 20 | e _
data dIStrIbUtlon - gg 21:,6 5'12 16242(;48 0 2:56 5I12 1o|24 2ol4a 4(;96 8:92 16:*;84
Processes Processes

— Compiler completes implementation
using synthesis SpMV (Large)

MG Benchmark
enchmar 75

220 T T T T T o N B ::_ MSIL P 1: |

— Scales to 16K+ cores, matches 2008 comen 5] eg & Foan o]
. . 160 1 60 | i

performance of hand-optimized s} 1 ssf]

100 - - 9 50 | 4

Fortran+MPI e[]] ¢ e

40 | 4 40 | L] o

1 : L : T £ = -: BT I] T |

))) 256 512 1024 2048 4096 8192 16384 30
lobal 1
gt t distribute / Processes 4096 8192 16384
e collect Processes
\/ \/ \/
sequential
specification

Partitioned SPMD
states sketch

S U.S. DEPARTMENT OF Ofﬁce Of e 2

ENERGY Science

|u. Lawrence Livermore —\I & H N 5
National Laboratory I I

D- .

4. Demonstrate how to overcome exascale challenges

e Generation of Complex Code for 10 Levels
of Memory Hierarchy

— 4th order stencil computation from
CNS Co-Design Proxy-App

— Same DSL code can generate to
2,3,4, ... levels too

— Code size of autogenerated code

DSL Code
Auto Generated Code 446 500 553 819

555 B Lawrence Livermore ...
6 U.S. DEPARTMENT OF Office of ?HKT\ E National Laboratory _“\ I I I
23
% /

EN ERGY Science

BRICE E=5: . O

T orecON

19

5. Demonstrate how to extend for non-trivial app. evolution

Higher Order Stencils in ROSE/PolyOpt

« Significance / Impact

High-order stencils arise in high-accuracy numerical solution approaches for PDEs

Chombo and Overture applications make use of high-order stencils, but current
implementations pay a high compute cost for increased stencil order

A new domain-specific optimization has enabled significantly enhanced performance for high-

order stencils, on multi-core processors

Implication: more accurate solution schemes using high-order stencils can be run in about the
same time as one with lower order stencils and lower accuracy

» (Generates high-performance 35
codes of > 10,000 lines 30
automatically from . 25
< 20 lines DSL description g 20

T 15
° 10
5

\ \
base

opt

B U.S. DEPARTMENT OF Office Of

@ ENERGY Science ”

National Laboratory

| Lawrence Livermore —\1 214 I I I o .

20

5. Demonstrate how to extend for non-trivial app. evolution

AMR Shift Calculus DSL with ROSE/PolyOpt

* High-level, user-friendly description of stencils, domain-specific information
enable the generation of clean loop-based code
 Dedicated high-order stencil optimization pass in PolyOpt:
1. Program transformations using associative/commutative properties of stencil convolutions
2. Target-specific code synthesis for SIMD ISA of the stencil application
* Results

— Setup: 4-core Intel Core i7-4770K Haswell processor with AVX2 SIMD, Intel ICC compiler
— Single-box execution of the stencil, double-precision data, no fusion across operators

Laplacian Laplacian Laplacian
2d 64pts 2d 81pts 3d 125pts
Performance
+ parallelization 43.31 GF/s 42.51 GF/s 36.81 GF/s
+
DSL input ~100 lines ** ~100 lines ** ~ 200 lines **
Productivity
Generated code 4210 lines 4592 lines 4433 lines

|™ Lawrence Livermore ...y
National Laboratory

ORicE THAX 1)

D- 21

%

U.S. DEPARTMENT OF Office Of 5‘};
0 ENERGY Science dﬂ

5. Demonstrate how to extend for non-trivial app. evolution

I High modes
I Low modes

=
W simplified

Maple DSL Code Generation for Stencils

Scientific Achievement

» Exploiting Maple DSL to generate high order stencil
codes using Cartesian and curvilinear coordinates. | 7

« Automatic mode analysis for stencil computation. ihakakal JE R

Significance and Impact (27 (A () <o

» Stencil code can be generated directly from mathematical equations expressed in
Maple language.

« Simplifying programming effort for stencil computation. ~ 10 lines of essential
Maple code can generate a 4" order wave equation using Cartesian (1165 lines
Fortran output) and curvilinear coordinates (3626 lines Fortran output).

* Mode analysis is automatically generated with stencil codes from Maple DSL.

* Providing complex stencil code variants (higher order or different coordinate) for
researches in performance tuning and compiler optimization.

Scientific Achievement

* Mode analysis reveals essential details about temporal stability for high order
discretization. (4" order 3D case shown in figure)

« Various stencil codes in different complexities generated for scientific computing and
compiler research purposes.

5,‘. E%>, U.S. DEPARTMENT OF Office Of S 1L Iﬁaa\ggir;?ié_é\éﬁg%or;e I II D
’ . Eitinpn 22
@ ENERGY Science “i BJRICE I==£ .0, -

6. Demonstrate verification for correctness

= Shift Calculus DSL - Verification Size+Time+Results

DSL Code ROSE | STS Race Mem- | SSA |Sorting Total
Variants | Mem-Upd | Front- |/Analysi, Cond Upd | Form & |Verification
Laplacian End S Check Extr |Create| Match | Times
Original 27,000 (0.44 |2.71 |0.00/OK |13.60 |1.81 8.45 27.02/--
Parallel 27,000 |0.13 |2.73 |563/0K |13.15 |1.80 |8.11 31.55/0K
Tiled 27,000 (0.13 |3.68 |11.18/0K |13.09 |1.84 |[8.11 38.04/0K

Verification size as number of extracted Memory-Updates

Verification Time in seconds
Race Condition Check : OK/FAIL

Verification: OK/FAIL (equivalence check with original)

Lawrence Livermore

U.S. DEPARTMENT OF National Laboratory i

@ ENERGY

Office of 154 &
Science i %RICE

= i D- .

—_———=T= OREGO.—,

7. Demonstrate a path from legacy apps. to the new DSL

e Bamboo: Restructure MPI code to tolerate communication

— Runs as a data-driven program

#pragma bamboo olap (nearest_neighbor) {

— Modest amounts of programmer o .o s
a n n Otat i O n) /gﬂpF?'(il;sc:rjltg(OSIz%c?GhE(S)tstcceellllss,Ieft/right/up/down)

#pragma bamboo receive {
MPI_Recv(RecvGhostcells, left/right/up/down)

/I unpack incoming ghost cells

}
 Performance P Watall);
for(j=1; j < N/numprocs -1; j++)
2.5D Matrix for(i=1; i < N -1; i++)
. ; V(j,i) = c*(U(j,i+1) + U(j,i-1) + UG+1,i) + UG-1,D));
Multipl swap(U, V);
}

}

Annotated legacy MPI code

Cores and

System 96K (Hopper) | 32K (Edison) 32K (Hopper)

Hand coded

22.0 GF/s - 83.7 TF/s
overlap

| B Lawrence Livermore ..
National Laboratory

U.S. DEPARTMENT OF Ofﬁce Of 2, “’I‘f ;’-3 N\
@ ENERGY oo 1 ey v

D- 24

||

7. Demonstrate a path from legacy apps. to the new DSL

 STNG: Synthesis to migrate legacy kernels in Fortran to Halide
— Sound, static method includes verification of equivalence

— Lifting to DSL and applying DSL optimizations better than
optimizing original code

— Promising early results

Legacy

Code

Fortran/C++ <:

Synthesis

Proof of
Equivalence

Stencil DSL
(Halide)

Kernel Speedup Relative to Original Serial Code

14 T T

T T T T T T T T T T T T T T
12
10
g s
&
c% 6
4
2
0
= (aY] o wn o - [sp] To] ~ r~ [s0] (2] o (=] o w
> o> o % S o S = S o2} =2} > > = S =
T 3 3 T ¥ =T = ¥ T E £ ° 2 § ¢
© @ @ «© [E E E S @ @ @
o [© © ©
openmp — poly m— halide m— halide(tuned) m—
; - Lawrence Livermore
U.S. DEPARTMENT OF Office of . L National Laboratory III D- 25
ENERGY science BRICE T=32.0.

7. Demonstrate a path from legacy apps. to the new DSL

e Helium: lifting of legacy stencil kernels to Halide DSL

— To recover a high level representation from a stripped x86 binary,
suitable for Halide DSL code generation

Unsound, dynamic, execution trace-based technique

#include <Halide.h> | aceseddan
#include <vector>) |||||||||||||||||||||||||||||||||||.:|:-:|:-:|:I:|I
using namespace std; i
using namespace Halide; o 25 2> 2= 25 2> 2—=— 2> 2H>20——— D> D> D> D>
int mainO{ e 2> 2 32> 2 xe2d> —— D>
Var X—O; 3-level 2
» var x_1; o 3x 3x@2> 2» N ax D>
ImageParam input_1(UInt(8),2); .
Func output_1; Buffer Structure Reconstruction
output_1(x_0,x_1) =
cast<uint8_t>(((((2* I
(Z*cast<uint32_t>(input_1(x_0+1,x_1+1))) Y E?-_EL‘?; e R
cast<uint32_t>(input_1(x_0, x_1+1)) + o mmcetin E::‘;é‘;’) .10
cast<uint32_t>(input_1(x_0+2,x_1+1))) n == l‘:’ ks Bl ime.i rwt,gn i
55 cast<uint32_t>(2))) & 255)); sam o" By —
vector<Argument> args; = R\/,m KX L
args.push_back(input_1); 4 ‘7‘ ‘ ®
- - 1] = " - 4 c
guiput_é:complIe_to_flle(halide_out_0",args); D .\\/ e 2352%13’)
eturn 0; R _ outp(i0:9)
} * input,(7,10) output,(9,11)
.\\/ input,(9,10) Df
L] L] ‘
MiniGMG Wi
DC of
7 9 1 put, (x,,X,+1)
output, (7.9 8 9 1 [a .\\/ iNpUE, (x,+2,%,+1)
10 =|9 8 1|, mmm)
Speedup 09 1o ' m
9 11 1 >f
bC
. v
4.25x Code Reconstruction -
S | Lawrence Livermore H - E
U.S. DEPARTMENT OF Office of L National Laboratory = D 26
Y 65 === SIAIE o
E N ERG SCI@HCG 3 @ R[CE ;;é?é neson UNIVERSITY

Why DSLs perform better than Libraries

Libraries have no global view
— Libraries cannot see their use (context) in the application
— Program analysis is mostly impossible (e.g. available parallelism)

— Individual highly-optimized components interconnected
Data transforms between
— Each optimized components have different data requirements
— May required data transforms
— Too much communication, especially for the exascale era
No cross-component fusion
— Best for locality may be to fuse loops in each component
— Library composition cannot handle this
— Halide got the biggest wins with fusion

U.S. DEPARTMENT OF Office of ”J
@ENERGY oo

Fusion example

e “Sake” Segmentation [Li et al. 2010]
— Segment objects using level-sets

e Original: 67 lines of MATLAB
e Halide: 148 lines of algorithm

e On the CPU, 70x faster
— MATLAB is memory-bandwidth limited

e On the GPU, 1250x faster

 Performance due to locality redundant
— MATLAB uses highly optimized libraries work
— Each filter touches the entire buffer, no locality

— Halide fuses across kernels using
stencil fusion with recomputation

— Halide gets very good locality

parallelism

|M Lawrence Livermore .. 4 H .
National Laboratory I I

U.S. DEPARTMENT OF Ofﬂce Of I;f':i'“Y-;-a' -
@ ENERGY Science i e

¥ @RICE I8 L.

Why DSLs perform better than Libraries

e Libraries have no global view
— Libraries cannot see their use (context) in the application
— Program analysis is mostly impossible (e.g. available parallelism)

— Individual highly-optimized components interconnected
e Data transforms between

— Each optimized components have different data requirements

— May required data transforms

— Too much communication, especially for the exascale era
* No cross-component fusion

— Best for locality may be to fuse loops in each component

— Library composition cannot handle this

— Halide got the biggest wins with fusion
e Other domain specific optimization

— Ex: Matrix operation re-association

e Ability to test out many different optimization combinations
— Change a line in the scheduling language and recompile vs. rewriting

a large part of the application
D- 29

i Lawrence Livermore
U.S. DEPARTMENT OF Off|ce of ﬁ 2 L National Laboratory . I I I
Y ¢
ENERG Science ©

Y gRICE TBEE O

Research Challenges

Addressing all the exascale challenges
— Managing deep memory hierarchies
— Maximizing locality and managing communication bandwidth
— Managing heterogeneity
— Resiliency
Making the DSL development process accessible to hero
programmers / library developers
— Taking DSL creation from compiler hacking to a high-level abstraction
— Handling semantic-changing domain specific optimizations
Coordinating an ensemble of DSLs to solve a single problem
— What is the interface for coordinating between DSLs?
Creating a common standard for DSL construction stack
— Libraries and DSLs to help create new DSLs
— First understand what is common across multiple DSLs

|l Lawrence Livermore
% U.S. DEPARTMENT OF Offlce Of 5.[.Y L National Laboratory \

ENERGY science ?‘:”-”"3‘5;: 2 Y RICE THM _

—_—— =T = OorecOon

D- 30

How to get the Hero Programmers Involved?

* Provide scheduling/optimization language
— No loss of control on what optimizations to do
 Transformation by example

— Synthesis tools such as sketch will eliminate the need to
understand the details on compiler analyses and intermediate
representations

— Easy to add new domain specific transformations/optimizations
* Tools for easy language extension

— Rosebud makes it easy to add domain language features to a DSL
* Autotuning eliminates the need for heuristics

— No need to create/change complex heuristics

— New features will be seamlessly integrated into the DSL
e Verification will make sure everything you did is correct

— Guarantees that your transformations are semantic preserving

- 31

|H Lawrence Livermore
NS DEEARIRENT VI8 Office of —*'[’f‘k": L National Laboratory _\

W ENERGY science Y @RICE E=5

e s OHEGO“

Methodology for Developing a New DSL

Identify the problem domain

— Example: AMR

Define a clean abstraction

— By a Domain Expert

— Example: Stencil Calculus by Phil Colella

If you have a problem that

you would like to make a DSL for
Dan is volunteering to help build the DSL

— Currently: DSL Expert = Hero programmers in the future
— Example: AMR DSL by Dan Quinlan

U.S. DEPARTMENT OF Offlce Of /

g kla |ona| Labo tory I I I
ENERGY Science & ‘3/ WRICE Z==2

32

