
X-Stack Traleika Glacier
Programming Environment

Linux

Product Platform

Bare Metal Shim

Prototype(s)

HTACNC

Tuning Guides

RStream

Low-level
compiler

HabC

Open
Community
Runtime

Event driven
Resiliency support
Introspection
Adaptation
Async support

Posix
Subset

Minimal
syscall(),
libC, libFortran,
libM, libstdc++, .
.

Work with
XPRESS
HPX
SLEEC
For best
functionality

Traleika Glacier Programming Environment

DSL

ROSE

Low-level
compiler

C++ Fortran

DSL, SEJITS

ROSE

Low-level
compiler

Python

C C++ FortranPython

MPI* OMP* . . .TBB

Evolutionary Environment Revolutionary Environment D-TEC DEGAS
Ru

nt
im

e
Tu

ni
ng

Sp
ec

ia
lis

t
Al

go
rit

hm
Sp

ec
ia

lis
t

Do
m

ai
n

Sp
ec

ia
lis

t

© 2015, Intel Corporation

Models

Model Today Ideal Future

Domain Specialist Science Homogeneous Domain Specific

Algorithm Specialist Programming Homogeneous Flexible

Tuning Specialist Machine Homogeneous Portable

Runtime Execution Static Resilient

He
ro

• How are programming models differentiated from programming environments
and what roles to they serve that are distinct but mutually supporting?

It is not unusual for a hero to use
FORTRAN, a subset of MPI-1 and expect to
do all their own tuning, debugging and
scheduling

Programming Models Issues
Take care not to blur together the domain
specialist, algorithm specialist and tuning
specialist when talking about abstractions

The community will not respond well to
this and should not. Abstractions should
help and if not should not be adopted

Domain specialist: Rapid implementation
Algorithm specialist: Efficient portable representation
Tuning specialist: Low power rapid executionThis is understood and implemented in

CHARM++ and MPI today.

It is dynamic scheduling of tasks in
the runtime for general purpose
workloads that is being explored

• What are the key new abstractions for parallelism that the community must adopt to
succeed at exascale? How should parallelism be identified and concurrency managed in
these models?

• Many application teams are beginning to explore task-based and data-driven
programming models. Are there common abstractions and key features? How do they
differ?

Programming Models Issues
• What are the key new abstractions for parallelism that the community must adopt to

succeed at exascale? How should parallelism be identified and concurrency managed in
these models?

• Many application teams are beginning to explore task-based and data-driven
programming models. Are there common abstractions and key features? How do they
differ?

A. Task based execution models offer performance portability, resiliency and scheduling
benefits. We are experimenting with a runtime to qualify and quantify these benefits.

A. It should not be necessary for the programming model to match the execution model
but we see the benefits. We are exploring programming models like Habanaro and CnC
that could fully exploit the benefits of a task driven runtime.

Programming Models Future

• Are there breakthroughs in programming models and environments that we should
explore, in addition to continued incremental improvements to existing ones?

A. Yes to both programming models and environments

A. Yes… take care not to blur together the domain specialist, algorithm specialist and
tuning specialist when talking about abstractions.

• What are the most promising ideas for programming abstractions to represent data and
its distribution across the lateral and hierarchical memory structures?

• Are there lessons to be learned from other communities that we can apply?

A. Yes to both programming models and environments

HTACNC

Tuning Guides

RStream

Low-level
compiler

HabC

Linux

Product Platform

Bare Metal Shim

Prototype(s)

Open
Community
Runtime

Event driven
Resiliency support
Introspection
Adaptation
Async support

Posix
Subset

Minimal
syscall(),
libC, libFortran,
libM, libstdc++, .
.

Work with
XPRESS
HPX
SLEEC
For best
functionalityRu

nt
im

e
Tu

ni
ng

Sp
ec

ia
lis

t
Al

go
rit

hm
Sp

ec
ia

lis
t

Do
m

ai
n

Sp
ec

ia
lis

t

DSL

ROSE

Low-level
compiler

C++ Fortran

DSL, SEJITS

ROSE

Low-level
compiler

Python

C C++ FortranPython

MPI* OMP* . . .TBB

Matlab R CHARM++

Jupyter

iPython

RAJA, Kakkos

Runtime

LLVM

Source to Source

DSL
Interactive Productive Environment

Evolutionary Environment Revolutionary Environment D-TEC DEGAS

© 2015, Intel Corporation

• How should PM/E represent persistent objects and the storage system to programmers?

A. Domain specialist: Pandas
A. Algorithm specialist: MPI-IO, HPF5
A. Tuning specialist: DAOS (FF Storage)

Are there innovative ideas for integrating
resilience and debugging into the programming
model?

A. Domain specialist: Should not have to deal with resilience
A. Algorithm specialist: Hints about sensitivity to failure and task boundaries
A. Tuning specialist: Characteristics of system may impact recovery times

	X-Stack Traleika Glacier�Programming Environment
	 Traleika Glacier Programming Environment
	Models
	Programming Models Issues
	Programming Models Issues
	Programming Models Future
	
	Slide Number 8
	Are there innovative ideas for integrating resilience and debugging into the programming model?

