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Models

Model Today Ideal Future

Domain Specialist Science Homogeneous Domain Specific

Algorithm Specialist Programming Homogeneous Flexible

Tuning Specialist Machine Homogeneous Portable

Runtime Execution Static Resilient

He
ro

• How are programming models differentiated from programming environments 
and what roles to they serve that are distinct but mutually supporting?

It is not unusual for a hero to use 
FORTRAN, a subset of MPI-1 and expect to 
do all their own tuning, debugging and 
scheduling



Programming Models Issues
Take care not to blur together the domain 
specialist, algorithm specialist and tuning 
specialist when talking about abstractions

The community will not respond well to 
this and should not. Abstractions should 
help and if not should not be adopted

Domain specialist: Rapid implementation
Algorithm specialist: Efficient portable representation
Tuning specialist: Low power rapid executionThis is understood and implemented in 

CHARM++ and MPI today.

It is dynamic scheduling of tasks in 
the runtime for general purpose 
workloads that is being explored

• What are the key new abstractions for parallelism that the community must adopt to 
succeed at exascale? How should parallelism be identified and concurrency managed in 
these models?

• Many application teams are beginning to explore task-based and data-driven 
programming models.  Are there common abstractions and key features?  How do they 
differ?



Programming Models Issues
• What are the key new abstractions for parallelism that the community must adopt to 

succeed at exascale? How should parallelism be identified and concurrency managed in 
these models?

• Many application teams are beginning to explore task-based and data-driven 
programming models.  Are there common abstractions and key features?  How do they 
differ?

A. Task based execution models offer performance portability, resiliency and scheduling 
benefits. We are experimenting with a runtime to qualify and quantify these benefits. 

A. It should not be necessary for the programming model to match the execution model 
but we see the benefits. We are exploring programming models like Habanaro and CnC
that could fully exploit the benefits of a task driven runtime. 



Programming Models Future

• Are there  breakthroughs in programming models and environments that we should 
explore, in addition to continued incremental improvements to existing ones?

A. Yes to both programming models and environments  

A. Yes… take care not to blur together the domain specialist, algorithm specialist and 
tuning specialist when talking about abstractions.

• What are the most promising ideas for programming abstractions to represent data and 
its distribution across the lateral and hierarchical memory structures?

• Are there lessons to be learned from other communities that we can apply?

A. Yes to both programming models and environments  
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• How should PM/E represent persistent objects and the storage system to programmers?

A. Domain specialist: Pandas
A.   Algorithm specialist: MPI-IO, HPF5
A. Tuning specialist: DAOS (FF Storage)



Are there innovative ideas for integrating 
resilience and debugging into the programming 
model?

A. Domain specialist: Should not have to deal with resilience
A.   Algorithm specialist: Hints about sensitivity to failure and task boundaries
A. Tuning specialist: Characteristics of system may impact recovery times
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