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§  Changes afoot in the ASC Program (ATDM) 
§  Overview of existing application-facing PM/E 

activities in the tri-labs 
§  Addressing the “charge” questions for 

applications 

Overview 
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Defense Programs 

NATIONAL NUCLEAR SECURITY ADMINISTRATION OFFICE OF DEFENSE PROGRAMS 

Program Elements 

3	  

§  Integrated	  Codes	  –	  Provides	  high-‐fidelity	  simula6ons	  of	  to	  evaluate	  and/or	  enable	  nuclear	  weapon	  safety	  and	  
security	  features.	  	  Underpins	  Annual	  Assessments,	  Resolu6on	  of	  Significant	  Finding	  Inves6ga6ons,	  and	  Life	  
Extension	  Op6ons.	  	  Adapts	  these	  integrated	  nuclear	  weapons	  design	  codes	  to	  each	  succeeding	  genera6on	  of	  
compu6ng	  plaJorms.	  

§  Physics	  and	  Engineering	  Models	  –	  Develops	  improved	  physical	  models	  and	  databases	  to	  improve	  the	  accuracy	  and	  
confidence	  of	  the	  integrated	  nuclear	  weapon	  design	  codes.	  

§  Verifica7on	  and	  Valida7on	  –	  Provides	  independent	  assurance	  that	  models	  in	  codes	  are	  accurate	  and	  consistent	  
with	  current	  models	  and	  data.	  	  Supports	  weapon	  assessments	  and	  annual	  cer6fica6on.	  	  	  

§  Advanced	  Technology	  Development	  and	  Mi7ga7on	  –	  Includes	  laboratory	  code	  and	  computer	  engineering	  and	  
science	  projects	  that	  pursue	  long-‐term	  simula6on	  and	  compu6ng	  goals	  relevant	  to	  both	  exascale	  compu6ng	  and	  
the	  broad	  na6onal	  security	  missions	  of	  the	  NNSA.	  

§  Computa7onal	  Systems	  and	  So@ware	  Environment	  –	  Procures	  state	  of	  the	  art	  High	  Performance	  Compu6ng	  
systems	  and	  the	  associated	  soPware	  environment	  (including	  necessary	  support	  personnel)	  enabling	  improvements	  
to	  stockpile	  es6mates.	  

§  Facility	  Opera7ons	  and	  User	  Support	  –	  Operates	  and	  maintains	  the	  computa6onal	  infrastructure	  at	  the	  nuclear	  
weapons	  laboratories.	  

Defense	  
Applica7ons	  
&	  Modeling	  

PlaGorms	  and	  
Infrastructure	  

ASC	  enables	  ICF,	  R&D,	  and	  T&E	  subprograms	  to	  support	  all	  elements	  of	  stockpile	  employment	  

Advanced Technology Development and 
Mitigation – Includes laboratory code and 
computer engineering and science projects 
that pursue long-term simulation and 
computing goals relevant to both exascale 
computing and the broad national security 
missions of the NNSA. 
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Defense Programs 

ATDM Subprogram  
(coordinated with IC & CSSE) 

•  Next-Generation Code Development & Application 
–  Long-term research investigating how future code development must address 

new HPC challenges, using new programming models and data management 
techniques developed through co-design of applications and systems 

•  Next-Generation Architecture & Software Development 
–  Long-term computing technology research of extreme, heterogeneous 

architectures and to mitigate its impact and advance its capabilities for ASC 
simulation codes 

Ø FY15 Activities: 
ü  Next-generation code development 
ü  Advanced hardware testbed deployment 
ü  Proxy application development and analysis 
ü  NREs for Trinity and Sierra - application readiness, burst buffer, compiler 

development, power management 
ü  FastForward and DesignForward collaborations 

v  FY16: ECI start ???? 
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ATDM (Advanced Technology 
Development and Mitigation) 
§  All three ASC labs are funded to undertake new code 

development under ATDM (aka “next gen”) 
•  Funding levels at levels commensurate with staff sizes for a “typical” 

code team (O(dozen) people), plus a small amount of additional 
CSSE support (e.g. tools and programming models) 

•  Targeting ATS platforms in 5+ years (CORAL, APEX, exascale, …) 
•  Higher risk / high reward strategy taking advantage of new 

technologies 
•  Each ASC lab is pursuing a slightly different approach, with increased 

emphasis on sharing lessons-learned and solutions 
•  Provides much needed “free energy” to maintain current production 

capabilities while addressing long-term goals 

§  Current production codes are likewise undergoing aggressive 
transformations to prepare for ATS deployments 

ATDM represents the first time ASC has undertaken “from scratch” multi-
physics code startups since the beginning of ASCI (mid-late 1990’s) 
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ASC Changes and Challenges 
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•  New funding and mandate 
to write codes from 
scratch 

•  Large body of CS and 
physics research to tap 
into since current codes 
were validated 

•  Much of the exascale 
workload will be in UQ 
ensembles – codes 
needn’t always scale to full 
exascale resource 

•  Renewed ability to hire 
staff after years of cuts 

•  Current production codes 
must also migrate to 
exascale 

•  We cannot wait another 
2-5 years to decide on 
technologies to use (or 
can we?) 

•  The best CS staff to lead 
these new code fully 
engaged in CoE and co-
design work.  

•  Skills gap across the 
board from applications-
aware experts. Need staff! 
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Advanced Architectures are already 
landing soon – we have move quickly 

Intel Xeon Phi 

Burst Buffer 

Advanced Power 
Management 

Multi-level Memory 
(HBM + DDR) 

Heterogeneous system 
(different node types) 
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Mellanox® Interconnect 
Dual-rail EDR Infiniband®  
 

IBM POWER 
•  NVLink™ 

NVIDIA Volta 
•  HBM 
•  NVLink 

Components 

Compute Node 
POWER® Architecture Processor 
NVIDIA®Volta™ 
NVMe-compatible PCIe 800GB SSD 
> 512 GB DDR4 + HBM 
Coherent Shared Memory  

Compute Rack 
Standard 19”  
Warm water cooling 
 

Compute System 
2.1 – 2.7 PB Memory 

120 -150 PFLOPS 
10 MW  

Sierra System 

GPFS™ File System 
120 PB usable storage 

1.0 TB/s bandwidth 

Heterogeneous Node 
w/ GPUs 

Multi-level memory 
hierarchy 

Programming Model 
Uncertainty 
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Re-implementation of ASC Production 
Codes is a Decade+ Process 

Research 
and 

conception 
of Prog 
Model 

1-5y 

Develop 
proof of 
concept 
product 

1-2y 2-4y 

7 – 20 years 
10 – 20 years 

Hardened 
product 

(suitable for 
prototyping) 

Community 
buy-in, 

“standards”, 
and wide 
adoption 

2-3y 

Re-implement 
basic 

functionality of 
application in 

new PM 

First Users / 
Feedback / 
Acceptance 

Comparable 
Feature Set 
to Legacy 
Application 

3-4y 1-2y 4-7y 

Validated for 
Mission. Take 
Over Legacy 
Application 

Users 

3-10y 

Early? adoption of research product 

2-3y 

Research Lifecycle 

Application Lifecycle 

Code built on new programming model takes 10+ years to develop, and is 
hopefully in production for 15-30+ years 
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The “ASC codes view” 
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Current 
Codes 

ATDM 
next-gen 
codes 

How I’ll attempt to 
characterize things 

The Reality you’ll 
probably hear about 

in the breakout 
sessions 

Session 
leads 
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ASC applications and the (inevitable?) 
movement toward Async Task Models 
§  Different applications/algorithms have varying needs 

•  Some algorithms should see a large benefit from dynamic scheduling 
and load balancing 

•  Some algorithms can be statically scheduled very efficiently 
•  Multi-physics will require flexibility and composability 

§  Many algorithms are only semi-asynchronous 
•  Timestep reductions 
•  Inter-package dependencies 

§  The “right” level of granularity is a research question 
•  Coarse grained = replace MPI with tasks, and manage threading, SIMT, 

and SIMD within the task 
•  Fine grained = attractive, but requires very fast/smart runtime 
•  Programming model abstraction shouldn’t dictate this 
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Intranode Programming Model 
Requirements 
§  Ability to tune for disparate architectures from single 

code base 
•  Portable (non vendor-specific) 

§  Biggest challenge we see: Managing data placement, 
prefetch, and locality 
•  We need all the memory on the system, not just HBM or device 

memory 

§  Isolation of computer science and physics concerns is 
helpful 

§  Low overheads will open up new options 
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MPI Will Continue to be Relevant 
at Exascale 
§  We (generally) do not use most MPI features, mostly a 

subset of MPI-1 standard, and early investigations into 
some MPI-3 features 
•  Non-blocking collectives, shared memory  

§  We need a better understanding of how imbalance 
changes between physics packages 

§  Current MPI codes are well-tuned to take advantage of 
coarse-grained asynchrony 

§  Today we are more latency/message injection limited 
than bandwidth bound 
•  Potentially exacerbated by nodes getting larger 
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Currently: MPI + Xsometimes 

14 

Physics A 

Physics B 

Physics C 

Physics D 

§  Distinct physics packages are 
implemented differently 
•  Languages 
•  MPI patterns and communication 

abstractions 
•  Load balancing strategy 
•  Use of threading 

§  Little or no overlapping of physics 
packages in time or space 

§  Issues looming today mixing MPI
+X packages 
•  e.g. OpenMP calling lib written in 

pthreads 
•  MPI communicator size dictated by the 

least-threaded (or longest running) 
package 

tim
es

te
pp

in
g 
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Someday, maybe 

15 

Physics A 

Physics B 

Physics C 

Physics D 

§  Tasks, tasks, everywhere 

§  Hierarchical 
•  Coarse-grained tasks 

spawning finer-grained  

§  Automatic migration of 
work 

§  Natural overlapping of 
packages – fewer 
barriers? 

tim
es

te
pp

in
g 
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Desired for maximum adoption – an 
incremental approach to multi-physics 
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Physics A 

Physics B 

Physics C 

Physics D 

§  Introduce tasks in the 
packages that will benefit 
the most 
•  Dynamic, load imbalanced 
•  Long-running 

§  Interoperability is key to 
this strategy 
•  Initially, we do not need tasks 

and MPI+X to overlap in time 
or space 

•  Just share the same 
executable, hand-off control 
between package boundaries 

tim
es

te
pp

in
g 
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Algorithmic research needed to 
allow concurrent operators 
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Physics A Physics B Physics C 
Phy-
sics 
D 

§  Packages run concurrently on different nodes MPMD style 

§  Each package adjusts it’s size 
•  Longer running packages strong scale by using relatively more resources 
•  Allows shorter-running packages to use fewer resources and avoid strong-scaling issues 
•  Relative resource allocations for each package can/should change dynamically in time 

—  Overdecomposition would almost be a necessity for this 

§  Requires packages to be run with slightly “stale” data 
•  Research question as to whether this is even viable 
•  Reduction in timestep for convergence might outweigh any benefits 

§  Programming model frameworks would help – doable with MPI+X 

tim
es

te
pp

in
g 

co
nv

er
ge

nc
e 

M procs N procs O procs P procs 
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§  Parallel execution 
•  Patterns: foreach, reduce, scan 
•  Tasks: simple expression of DAGs 

§  Data layout and traversal 
•  Multi-dimensional arrays 
•  Locality-aware traversal 
•  Managing locality while tasks are migrating 

Q1: What are the key new abstractions for 
parallelism that the community must adopt that 
will allow you to achieve your exascale goals? 
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§  Easy answer – tools! And tools. 
•  For OpenMP/threading – static and dynamic analysis to detect non-

deterministic race conditions 
•  Performance 

—  Focus on actionable outcomes, not just collection 
•  Debugging 

—  At scale with MPI+X 
—  Task-models – major concern of adopting AMT 

•  Construction and maintenance of asynchronous task models 
—  Helping domain scientists reason about execution flow – visual tools 
—  Ability to unit test task behavior with full coverage of inputs/outputs 

•  Memory analysis tools 
—  How/where is data motion a bottleneck (esp. between levels of the memory hierarchy) 
—  Access patterns / locality 

•  Compilers 
—  Optimizing through abstractions (e.g. templates, threads, lambdas) 

Q2: What breakthrough in programming 
environments is required for exascale? 
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§  Step 1 – let the system manage it 
•  Trinity/CORAL architectures provide mechanism to do this 

through coherent common address spaces 
•  Tools are required to help identify where explicit data motion 

between levels will be required 
§  Step 2 – explicit memory management 

•  Distinct malloc() calls, and explicit memcpy() between 
spaces 

•  Hide it behind layers like Kokkos and RAJA  
•  Type-based declarations (ala UPC) 

§  Needs to take into account potential for three (or 
more) levels 
•  NVRAM, DRAM, OMP/Device, GPU-specific 

Q3: How will you design your code to manage 
the potentially deep memory hierarchy? 
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§  Insulate the user from the details of the Burst 
Buffer 

§  Need methods (ala SSIO workshop discussions) 
to manage “data sets”, not just objects or files 
•  Want to move away from Posix, but need cross-

platform support for reading the files back 
•  Data provenance is an important emerging use case 
—  Meta-data that captures programmer/user-defined information 

about the data set 

Q4: How should PM/E represent persistent 
objects and the storage system to 
programmers? 
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§  Redundancy – either in data, or computation 
§  Checkpoint/Restart has another machine-generation (or 

two) of life with Burst Buffers 
•  Want to hide the details behind something like SCR 

§  Development of algorithmically resilient algorithms 
§  Task-based models offer a potentially attractive solution 

•  Need OS/R support to detect failures 

§  MPI needs a suitable solution that doesn’t require 
shrinking the communicator 

Q5: How will you manage the resiliency 
challenges in your code? What system support 
will you assume to depend upon? 

Like I/O and power management, this is low on the list of things 
users and developers want to think about. Not yet clear how 

much we can depend on automated solutions 
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§  Most ASC code teams currently believe that 
tasks need to be defined at a relatively coarse 
granularity 
•  Tasks to migrate between nodes 
•  Thread teams to deal with GPUs and SIMD 
•  This attitude is likely an artifact of current status quo 

§  Desire to express finer-grained tasks 
•  Greater ability for the runtime to “do it’s thing” 
•  Greater skepticism that this is truly doable 

Q6: Discuss how your application could utilize task-
based and data-driven programming models or some 
other model for expressing parallelism.   How would 
you like to parallelism and data locality in your 
application? 
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§  Storage/data management 
•  Avoiding storage of intermediate results by using high-

capacity memory, or “memory appliances” 

§  Workflow 
•  Kepler, VisTrails, SAW – need to learn from community 

on how to generalize workflow definitions and manage 
at a system level approach 

§  Analytics 
•  Machine learning, deep learning 

Q7: Are there lessons to be learned from 
other communities that we can apply? 
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§  Multi-level memory models 
•  Coherent memory spaces ease transition, but consensus that 

application “hints” or explicit direction will be necessary.  

§  OpenMP scalability and portability 
•  Even the best implementations have too much overhead to allow 

fine-grained parallelism 
•  Will OpenMP 4.x be sufficient for targeting GPUs? 

§  Asynchronous Task Models 
•  Research needed in how applications can easily express tasking 
•  Growing consensus in its viability, but lots of unanswered 

questions 
•  Will domain-scientists revolt? Yes, if we don’t have good… 

§  Tools 
•  Need for cross-platform, easy-to-use, scalable tools that focus on 

insight 

Conclusions – what’s keeping us 
up at night (at least that’ll fit on one slide) 




