
LLNL-PRES-668346
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

ASC Program Needs for Future
Programming Models and Environments

ASCR/ASC PM/E workshop

Rob Neely

March 9-11, 2015

Lawrence Livermore National Laboratory LLNL-PRES-668346
2

§  Changes afoot in the ASC Program (ATDM)
§  Overview of existing application-facing PM/E

activities in the tri-labs
§  Addressing the “charge” questions for

applications

Overview

3

Defense Programs

NATIONAL NUCLEAR SECURITY ADMINISTRATION OFFICE OF DEFENSE PROGRAMS

Program Elements

3	

§  Integrated	 Codes	 –	 Provides	 high-‐fidelity	 simula6ons	 of	 to	 evaluate	 and/or	 enable	 nuclear	 weapon	 safety	 and	
security	 features.	 	 Underpins	 Annual	 Assessments,	 Resolu6on	 of	 Significant	 Finding	 Inves6ga6ons,	 and	 Life	
Extension	 Op6ons.	 	 Adapts	 these	 integrated	 nuclear	 weapons	 design	 codes	 to	 each	 succeeding	 genera6on	 of	
compu6ng	 plaJorms.	

§  Physics	 and	 Engineering	 Models	 –	 Develops	 improved	 physical	 models	 and	 databases	 to	 improve	 the	 accuracy	 and	
confidence	 of	 the	 integrated	 nuclear	 weapon	 design	 codes.	

§  Verifica7on	 and	 Valida7on	 –	 Provides	 independent	 assurance	 that	 models	 in	 codes	 are	 accurate	 and	 consistent	
with	 current	 models	 and	 data.	 	 Supports	 weapon	 assessments	 and	 annual	 cer6fica6on.	 	 	

§  Advanced	 Technology	 Development	 and	 Mi7ga7on	 –	 Includes	 laboratory	 code	 and	 computer	 engineering	 and	
science	 projects	 that	 pursue	 long-‐term	 simula6on	 and	 compu6ng	 goals	 relevant	 to	 both	 exascale	 compu6ng	 and	
the	 broad	 na6onal	 security	 missions	 of	 the	 NNSA.	

§  Computa7onal	 Systems	 and	 So@ware	 Environment	 –	 Procures	 state	 of	 the	 art	 High	 Performance	 Compu6ng	
systems	 and	 the	 associated	 soPware	 environment	 (including	 necessary	 support	 personnel)	 enabling	 improvements	
to	 stockpile	 es6mates.	

§  Facility	 Opera7ons	 and	 User	 Support	 –	 Operates	 and	 maintains	 the	 computa6onal	 infrastructure	 at	 the	 nuclear	
weapons	 laboratories.	

Defense	
Applica7ons	
&	 Modeling	

PlaGorms	 and	
Infrastructure	

ASC	 enables	 ICF,	 R&D,	 and	 T&E	 subprograms	 to	 support	 all	 elements	 of	 stockpile	 employment	

Advanced Technology Development and
Mitigation – Includes laboratory code and
computer engineering and science projects
that pursue long-term simulation and
computing goals relevant to both exascale
computing and the broad national security
missions of the NNSA.

4

Defense Programs

ATDM Subprogram
(coordinated with IC & CSSE)

•  Next-Generation Code Development & Application
–  Long-term research investigating how future code development must address

new HPC challenges, using new programming models and data management
techniques developed through co-design of applications and systems

•  Next-Generation Architecture & Software Development
–  Long-term computing technology research of extreme, heterogeneous

architectures and to mitigate its impact and advance its capabilities for ASC
simulation codes

Ø FY15 Activities:
ü  Next-generation code development
ü  Advanced hardware testbed deployment
ü  Proxy application development and analysis
ü  NREs for Trinity and Sierra - application readiness, burst buffer, compiler

development, power management
ü  FastForward and DesignForward collaborations

v  FY16: ECI start ????

Lawrence Livermore National Laboratory LLNL-PRES-668346
5

ATDM (Advanced Technology
Development and Mitigation)
§  All three ASC labs are funded to undertake new code

development under ATDM (aka “next gen”)
•  Funding levels at levels commensurate with staff sizes for a “typical”

code team (O(dozen) people), plus a small amount of additional
CSSE support (e.g. tools and programming models)

•  Targeting ATS platforms in 5+ years (CORAL, APEX, exascale, …)
•  Higher risk / high reward strategy taking advantage of new

technologies
•  Each ASC lab is pursuing a slightly different approach, with increased

emphasis on sharing lessons-learned and solutions
•  Provides much needed “free energy” to maintain current production

capabilities while addressing long-term goals

§  Current production codes are likewise undergoing aggressive
transformations to prepare for ATS deployments

ATDM represents the first time ASC has undertaken “from scratch” multi-
physics code startups since the beginning of ASCI (mid-late 1990’s)

Lawrence Livermore National Laboratory LLNL-PRES-668346
6

ASC Changes and Challenges

6

•  New funding and mandate
to write codes from
scratch

•  Large body of CS and
physics research to tap
into since current codes
were validated

•  Much of the exascale
workload will be in UQ
ensembles – codes
needn’t always scale to full
exascale resource

•  Renewed ability to hire
staff after years of cuts

•  Current production codes
must also migrate to
exascale

•  We cannot wait another
2-5 years to decide on
technologies to use (or
can we?)

•  The best CS staff to lead
these new code fully
engaged in CoE and co-
design work.

•  Skills gap across the
board from applications-
aware experts. Need staff!

Lawrence Livermore National Laboratory LLNL-PRES-668346
7

Advanced Architectures are already
landing soon – we have move quickly

Intel Xeon Phi

Burst Buffer

Advanced Power
Management

Multi-level Memory
(HBM + DDR)

Heterogeneous system
(different node types)

Lawrence Livermore National Laboratory LLNL-PRES-668346
8

Mellanox® Interconnect
Dual-rail EDR Infiniband®

IBM POWER
•  NVLink™

NVIDIA Volta
•  HBM
•  NVLink

Components

Compute Node
POWER® Architecture Processor
NVIDIA®Volta™
NVMe-compatible PCIe 800GB SSD
> 512 GB DDR4 + HBM
Coherent Shared Memory

Compute Rack
Standard 19”
Warm water cooling

Compute System
2.1 – 2.7 PB Memory

120 -150 PFLOPS
10 MW

Sierra System

GPFS™ File System
120 PB usable storage

1.0 TB/s bandwidth

Heterogeneous Node
w/ GPUs

Multi-level memory
hierarchy

Programming Model
Uncertainty

Lawrence Livermore National Laboratory LLNL-PRES-668346
9

Re-implementation of ASC Production
Codes is a Decade+ Process

Research
and

conception
of Prog
Model

1-5y

Develop
proof of
concept
product

1-2y 2-4y

7 – 20 years
10 – 20 years

Hardened
product

(suitable for
prototyping)

Community
buy-in,

“standards”,
and wide
adoption

2-3y

Re-implement
basic

functionality of
application in

new PM

First Users /
Feedback /
Acceptance

Comparable
Feature Set
to Legacy
Application

3-4y 1-2y 4-7y

Validated for
Mission. Take
Over Legacy
Application

Users

3-10y

Early? adoption of research product

2-3y

Research Lifecycle

Application Lifecycle

Code built on new programming model takes 10+ years to develop, and is
hopefully in production for 15-30+ years

Lawrence Livermore National Laboratory LLNL-PRES-668346
10

The “ASC codes view”

10

Current
Codes

ATDM
next-gen
codes

How I’ll attempt to
characterize things

The Reality you’ll
probably hear about

in the breakout
sessions

Session
leads

Lawrence Livermore National Laboratory LLNL-PRES-668346
11

ASC applications and the (inevitable?)
movement toward Async Task Models
§  Different applications/algorithms have varying needs

•  Some algorithms should see a large benefit from dynamic scheduling
and load balancing

•  Some algorithms can be statically scheduled very efficiently
•  Multi-physics will require flexibility and composability

§  Many algorithms are only semi-asynchronous
•  Timestep reductions
•  Inter-package dependencies

§  The “right” level of granularity is a research question
•  Coarse grained = replace MPI with tasks, and manage threading, SIMT,

and SIMD within the task
•  Fine grained = attractive, but requires very fast/smart runtime
•  Programming model abstraction shouldn’t dictate this

Lawrence Livermore National Laboratory LLNL-PRES-668346
12

Intranode Programming Model
Requirements
§  Ability to tune for disparate architectures from single

code base
•  Portable (non vendor-specific)

§  Biggest challenge we see: Managing data placement,
prefetch, and locality
•  We need all the memory on the system, not just HBM or device

memory

§  Isolation of computer science and physics concerns is
helpful

§  Low overheads will open up new options

Lawrence Livermore National Laboratory LLNL-PRES-668346
13

MPI Will Continue to be Relevant
at Exascale
§  We (generally) do not use most MPI features, mostly a

subset of MPI-1 standard, and early investigations into
some MPI-3 features
•  Non-blocking collectives, shared memory

§  We need a better understanding of how imbalance
changes between physics packages

§  Current MPI codes are well-tuned to take advantage of
coarse-grained asynchrony

§  Today we are more latency/message injection limited
than bandwidth bound
•  Potentially exacerbated by nodes getting larger

Lawrence Livermore National Laboratory LLNL-PRES-668346
14

Currently: MPI + Xsometimes

14

Physics A

Physics B

Physics C

Physics D

§  Distinct physics packages are
implemented differently
•  Languages
•  MPI patterns and communication

abstractions
•  Load balancing strategy
•  Use of threading

§  Little or no overlapping of physics
packages in time or space

§  Issues looming today mixing MPI
+X packages
•  e.g. OpenMP calling lib written in

pthreads
•  MPI communicator size dictated by the

least-threaded (or longest running)
package

tim
es

te
pp

in
g

Lawrence Livermore National Laboratory LLNL-PRES-668346
15

Someday, maybe

15

Physics A

Physics B

Physics C

Physics D

§  Tasks, tasks, everywhere

§  Hierarchical
•  Coarse-grained tasks

spawning finer-grained

§  Automatic migration of
work

§  Natural overlapping of
packages – fewer
barriers?

tim
es

te
pp

in
g

Lawrence Livermore National Laboratory LLNL-PRES-668346
16

Desired for maximum adoption – an
incremental approach to multi-physics

16

Physics A

Physics B

Physics C

Physics D

§  Introduce tasks in the
packages that will benefit
the most
•  Dynamic, load imbalanced
•  Long-running

§  Interoperability is key to
this strategy
•  Initially, we do not need tasks

and MPI+X to overlap in time
or space

•  Just share the same
executable, hand-off control
between package boundaries

tim
es

te
pp

in
g

Lawrence Livermore National Laboratory LLNL-PRES-668346
17

Algorithmic research needed to
allow concurrent operators

17

Physics A Physics B Physics C
Phy-
sics
D

§  Packages run concurrently on different nodes MPMD style

§  Each package adjusts it’s size
•  Longer running packages strong scale by using relatively more resources
•  Allows shorter-running packages to use fewer resources and avoid strong-scaling issues
•  Relative resource allocations for each package can/should change dynamically in time

—  Overdecomposition would almost be a necessity for this

§  Requires packages to be run with slightly “stale” data
•  Research question as to whether this is even viable
•  Reduction in timestep for convergence might outweigh any benefits

§  Programming model frameworks would help – doable with MPI+X

tim
es

te
pp

in
g

co
nv

er
ge

nc
e

M procs N procs O procs P procs

Lawrence Livermore National Laboratory LLNL-PRES-668346
18

§  Parallel execution
•  Patterns: foreach, reduce, scan
•  Tasks: simple expression of DAGs

§  Data layout and traversal
•  Multi-dimensional arrays
•  Locality-aware traversal
•  Managing locality while tasks are migrating

Q1: What are the key new abstractions for
parallelism that the community must adopt that
will allow you to achieve your exascale goals?

Lawrence Livermore National Laboratory LLNL-PRES-668346
19

§  Easy answer – tools! And tools.
•  For OpenMP/threading – static and dynamic analysis to detect non-

deterministic race conditions
•  Performance

—  Focus on actionable outcomes, not just collection
•  Debugging

—  At scale with MPI+X
—  Task-models – major concern of adopting AMT

•  Construction and maintenance of asynchronous task models
—  Helping domain scientists reason about execution flow – visual tools
—  Ability to unit test task behavior with full coverage of inputs/outputs

•  Memory analysis tools
—  How/where is data motion a bottleneck (esp. between levels of the memory hierarchy)
—  Access patterns / locality

•  Compilers
—  Optimizing through abstractions (e.g. templates, threads, lambdas)

Q2: What breakthrough in programming
environments is required for exascale?

Lawrence Livermore National Laboratory LLNL-PRES-668346
20

§  Step 1 – let the system manage it
•  Trinity/CORAL architectures provide mechanism to do this

through coherent common address spaces
•  Tools are required to help identify where explicit data motion

between levels will be required
§  Step 2 – explicit memory management

•  Distinct malloc() calls, and explicit memcpy() between
spaces

•  Hide it behind layers like Kokkos and RAJA
•  Type-based declarations (ala UPC)

§  Needs to take into account potential for three (or
more) levels
•  NVRAM, DRAM, OMP/Device, GPU-specific

Q3: How will you design your code to manage
the potentially deep memory hierarchy?

Lawrence Livermore National Laboratory LLNL-PRES-668346
21

§  Insulate the user from the details of the Burst
Buffer

§  Need methods (ala SSIO workshop discussions)
to manage “data sets”, not just objects or files
•  Want to move away from Posix, but need cross-

platform support for reading the files back
•  Data provenance is an important emerging use case
—  Meta-data that captures programmer/user-defined information

about the data set

Q4: How should PM/E represent persistent
objects and the storage system to
programmers?

Lawrence Livermore National Laboratory LLNL-PRES-668346
22

§  Redundancy – either in data, or computation
§  Checkpoint/Restart has another machine-generation (or

two) of life with Burst Buffers
•  Want to hide the details behind something like SCR

§  Development of algorithmically resilient algorithms
§  Task-based models offer a potentially attractive solution

•  Need OS/R support to detect failures

§  MPI needs a suitable solution that doesn’t require
shrinking the communicator

Q5: How will you manage the resiliency
challenges in your code? What system support
will you assume to depend upon?

Like I/O and power management, this is low on the list of things
users and developers want to think about. Not yet clear how

much we can depend on automated solutions

Lawrence Livermore National Laboratory LLNL-PRES-668346
23

§  Most ASC code teams currently believe that
tasks need to be defined at a relatively coarse
granularity
•  Tasks to migrate between nodes
•  Thread teams to deal with GPUs and SIMD
•  This attitude is likely an artifact of current status quo

§  Desire to express finer-grained tasks
•  Greater ability for the runtime to “do it’s thing”
•  Greater skepticism that this is truly doable

Q6: Discuss how your application could utilize task-
based and data-driven programming models or some
other model for expressing parallelism. How would
you like to parallelism and data locality in your
application?

Lawrence Livermore National Laboratory LLNL-PRES-668346
24

§  Storage/data management
•  Avoiding storage of intermediate results by using high-

capacity memory, or “memory appliances”

§  Workflow
•  Kepler, VisTrails, SAW – need to learn from community

on how to generalize workflow definitions and manage
at a system level approach

§  Analytics
•  Machine learning, deep learning

Q7: Are there lessons to be learned from
other communities that we can apply?

Lawrence Livermore National Laboratory LLNL-PRES-668346
25

§  Multi-level memory models
•  Coherent memory spaces ease transition, but consensus that

application “hints” or explicit direction will be necessary.

§  OpenMP scalability and portability
•  Even the best implementations have too much overhead to allow

fine-grained parallelism
•  Will OpenMP 4.x be sufficient for targeting GPUs?

§  Asynchronous Task Models
•  Research needed in how applications can easily express tasking
•  Growing consensus in its viability, but lots of unanswered

questions
•  Will domain-scientists revolt? Yes, if we don’t have good…

§  Tools
•  Need for cross-platform, easy-to-use, scalable tools that focus on

insight

Conclusions – what’s keeping us
up at night (at least that’ll fit on one slide)

