
Parallel Session II
Methods for Evaluating PM

Armando Solar-Lezama
From notes by Kathy Yelick and Sriram Krishnamoorthy

from discussion with all Panel II participants



Ground truth

• Programming models that people will use and like

• Programming models that allow us to do science we can’t do today

• Programming models that make otherwise unusable machines usable



Key issues

• Measuring against the ground truth takes too long

• Evaluating Programming Model vs. Evaluating Implementation
• But some PMs are easier to implement than others

• Evaluating PM vs. Evaluating Algorithms
• But some algorithms can be implemented more naturally



From idea to system

Idea

Informed from
talking to

applications
people and

vendors

Reference
Implementation

Deeper application
team engagement

Experiment with
production code

Develop alternative
implementations

Toolchain support

Full documentation
support hardening

Science results
from exascale

Start writing code jointly
with applications team

2018



From idea to system

• We won’t get to ground truth until the last step
• Each of these steps takes a lot of money

• Especially the later ones
• What metrics should determine that an idea is ready to move to

the next stage

Idea

Reference
Implementation

Deeper application
team engagement

Experiment with
production code

Develop alternative
implementations

Toolchain support

Full documentation
support hardening

Science results
from exascale



Capabilities vs Ease of adoption

Ease of adoption

Easy to adopt
with minimal
changes

Full rewrite of the
code in an obscure
language

Ca
pa

bi
lit

ie
s

Works a little
better than
what we have
now

Guaranteed
future proof
against
heterogeneous
faulty …



Capabilities

• Raw performance
• Runtime
• Scalability (up and down)
• Memory footprint
• On what machines?

• Support for exascale issues
• Fault tolerance
• Heterogeneity
• Explicit cache management

• Future proof
• Automation
• Separation of concerns

• Correctness
• Are certain classes of bugs ruled out?



Ease of adoption

• Is it close to what people already use?

• Is it clean? easy to learn? easy to use?

• Is it general and expressive?

• Is there an ecosystem for it beyond us?

• Does it support incremental migration?

• How transparent is the system?
• Debuggability for both performance and correctness



Different measures at
different stages

Idea

Reference
Implementation

Deeper application
team engagement

Experiment with
production code

Develop alternative
implementations

Toolchain support

Full documentation
support hardening

Science results
from exascale

MiniApps
?

Not-so-
mini-
apps

?

Opinion of
early

adopters

Simulators


