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Ground truth

• Programming models that people will use and like

• Programming models that allow us to do science we can’t do today

• Programming models that make otherwise unusable machines usable



Key issues

• Measuring against the ground truth takes too long

• Evaluating Programming Model vs. Evaluating Implementation
• But some PMs are easier to implement than others

• Evaluating PM vs. Evaluating Algorithms
• But some algorithms can be implemented more naturally
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From idea to system

• We won’t get to ground truth until the last step
• Each of these steps takes a lot of money

• Especially the later ones
• What metrics should determine that an idea is ready to move to

the next stage
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Capabilities vs Ease of adoption
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Capabilities

• Raw performance
• Runtime
• Scalability (up and down)
• Memory footprint
• On what machines?

• Support for exascale issues
• Fault tolerance
• Heterogeneity
• Explicit cache management

• Future proof
• Automation
• Separation of concerns

• Correctness
• Are certain classes of bugs ruled out?



Ease of adoption

• Is it close to what people already use?

• Is it clean? easy to learn? easy to use?

• Is it general and expressive?

• Is there an ecosystem for it beyond us?

• Does it support incremental migration?

• How transparent is the system?
• Debuggability for both performance and correctness
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