
Michael Garland Nvidia Mary Hall University of Utah

Michael Heroux Sandia Natl Labs Larry Kaplan Cray Inc

Richard Lethin Reservoir Labs Kathryn O’Brien IBM

Vivek Sarkar Rice John Shalf LBL

Mark Snir ANL/UIUC Armando Solar-Lezama MIT

Thomas Sterling Indiana University Katherine Yelick UC Berkeley

ASCR Programming
Environments Summit Report

Summary

Motivation

Hardware Challenges

• Energy Efficiency
• With current technology, power estimates

are in the range of 100MW
• Enough to power about 30K homes

• Node Architecture
• Nodes are likely to be more hierarchical and

heterogeneous
• Voltage/power controls may be exposed to

software

• Reliability and Correctness
• Things are going to break

Software Challenges

• Multiscale Models and Multiphisics simulations

• New usage models

• Application size and software complexity

• Data-driven computation

Ecosystem constraints

• Not all software will be rewritten

• The supercomputing market is small
• Technology reuse
• Financial viability

• Acquiring new skills is hard

Background

So what is a
programming model?

• A set of abstractions that simplify and structure the way the
programmer thinks about and expresses a parallel algorithm

• Not to be confused with a Programming System which
implements one or more programming models

Programming model

• Must provide abstractions for dealing with several concerns
• Execution distribution
• Scheduling
• Data partitioning
• Data placement
• Data layout
• Communication and synchronization
• Error handling
• Power management

Programming model
stack

High level
Domain Specific Abstractions

Mid level
Domain Independent Abstractions

Low level
Execution Level Abstractions

Science level:
• Embedded DSLs for important domains
• Support for custom abstractions
• Support for manipulating them

Software level:
• Logical structure of parallelism and locality
• Avoid committing to specific architecture

Platform specific level:
• Explicit interfaces for task creation, data

movement, synchronization, etc.
• A lot of programming today is at this level!
• New interfaces for managing power,

resilience, and introspection

Programming model
stack

High level
Domain Specific Abstractions

Mid level
Domain Independent Abstractions

Low level
Execution Level Abstractions

Mappings
• Automate when possible
• Avoid all-or-nothing mechanisms

Domain Specific Abstractions

Example:
HPGMG on Halide

Func Ax_n("Ax_n"), lambda("lambda"), chebyshev("chebyshev");
Var i("i"),j("j"),k("k");
Ax_n(i,j,k) = a*alpha(i,j,k)*x_n(i,j,k) - b*h2inv*(

beta_i(i,j,k) *(valid(i-1,j,k)*(x_n(i,j,k) + x_n(i-1,j,k)) - 2.0f*x_n(i,j,k))
+ beta_j(i,j,k) *(valid(i,j-1,k)*(x_n(i,j,k) + x_n(i,j-1,k)) - 2.0f*x_n(i,j,k))
+ beta_k(i,j,k) *(valid(i,j,k-1)*(x_n(i,j,k) + x_n(i,j,k-1)) - 2.0f*x_n(i,j,k))
+ beta_i(i+1,j,k)*(valid(i+1,j,k)*(x_n(i,j,k) + x_n(i+1,j,k)) - 2.0f*x_n(i,j,k))
+ beta_j(i,j+1,k)*(valid(i,j+1,k)*(x_n(i,j,k) + x_n(i,j+1,k)) - 2.0f*x_n(i,j,k))
+ beta_k(i,j,k+1)*(valid(i,j,k+1)*(x_n(i,j,k) + x_n(i,j,k+1)) - 2.0f*x_n(i,j,k)));

lambda(i,j,k) = 1.0f / (a*alpha(i,j,k) - b*h2inv*(
beta_i(i,j,k) *(valid(i-1,j,k) - 2.0f)

+ beta_j(i,j,k) *(valid(i,j-1,k) - 2.0f)
+ beta_k(i,j,k) *(valid(i,j,k-1) - 2.0f)
+ beta_i(i+1,j,k)*(valid(i+1,j,k) - 2.0f)
+ beta_j(i,j+1,k)*(valid(i,j+1,k) - 2.0f)
+ beta_k(i,j,k+1)*(valid(i,j,k+1) - 2.0f)));

chebyshev(i,j,k) = x_n(i,j,k) + c1*(x_n(i,j,k)-x_nm1(i,j,k))+
c2*lambda(i,j,k)*(rhs(i,j,k)-Ax_n(i,j,k));

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Original Halide CPU Halide GPU

Execution Time
1^3

2^3

4^3

8^3

16^3

32^3

64^3

128^3

256^3

DSL Code

Example:
D-Tec Stencil DSL

double f(double& x, int y){return pow(x,y);}
Stencil lapStencil;

for (dir = 0; dir < DIM; dir++){
Point pt = getUnitv(dir);
lapStencil += Shift(pt) -2*Shift(pt*0) + Shift(-pt))/(h*h);

};
void foo::operator(LevelData<RectGridArray<double>& a_phi){

a_phi.exchange();
Iterator it(a_phi);
for (it.begin();it.ok();it++){
RectGridArray<double>& phiPatch =a_phi[it()];
phiPatch = f(.,5)@phiPatch;
phiPatch = lapStencil(phiPatch) on
a_phi.getBox(dit());

}
};

Kernel from CNS Co-Design Proxy-App in DSL

Automatically generated code:
• 500+ lines of optimized code
• 10 levels of memory hierarchy
• MPI used at highest level
• Optimized for Many-Core
• 9 levels of software managed

cache memory levels
• Optimized for NUMA architecture
• lowest level vectorized
• Developed using SNL SST Micro

Exascale Architecture Simulator

Key issues

• Stand-alone vs. Embedded
• Traditionally an important tradeoff
• New embedding techniques have blurred the line
• Improved language/system support will help

• Building good DSLs is difficult
• Good abstractions require knowledge and experience
• Platform should support iteration and experimentation by

domain experts

Embedded DSL wishlist

• Support for syntactic extensibility
• Support for Autotuning

• Make choices explicit
• Support for symbolic manipulation

• DSL designer should have a say on how to translate a DSL program into
a more efficient DSL program

• Support for stating algebraic properties
• Is a DSL operation associative?
• Is it commutative?

• Support for high-level semantic information
• Rules of usage assumptions and guarantees of different constructs

• Support for debuggability

Mapping

• Automatic path
• Compilers / Runtimes
• Autotuners
• Machine learning

• Expert driven path
• Halide shows the benefit of explicit user-guided mapping
• Synthesis and verification can help reduce the effort

Domain Independent
Abstractions

Key concerns

• Parallelism

• Locality

• Analyzability?

Parallel loop

• Basic mechanism for expressing parallel iteration

• Important to ensure locality in mapping parallel iterations to
physical cores

• E.g. affinity in upc_forall

#pragma omp parallel for
for(int i=0; i<N; ++i){ F(i); }

parallel_for(x:interval(0,N)){ F(x); }

Beyond loops:
Parallel patterns

• Tasks

• Map-reduce

• Producer-consumer / pipeline parallelism / DAGs

• Streaming computation

• Fork-join recursion

Data model: Goals

• Expose locality while remaining platform independent
• Avoid over-specifying data layout

• Expose hierarchical structure in data
• Enable flexible mappings to different memory hierarchies

• Allow making layout decisions independent of code

Execution level abstractions

Execution level
abstraction

• Embody a parameterized machine model

n

P

P

P

P

n

Memory

P P P P

Execution level
abstraction

• Embody a parameterized machine model

• Model likely to become more complex
• Hopefully not as complex as the machine itself

• Expected to include
• Heterogeneity
• Deeper hierarchy

The model

container

threads

Coherence
domain

Coherence
domain

Core Core Core Core

The model

container

threads

Coherence
domain

Coherence
domain

container

threads

Coherence
domain

Coherence
domain

Enclave

The model

Enclave Enclave

Enclave Enclave

The model

Enclave Enclave

Enclave Enclave

Storage

• Coherent storage within a coherence domain

• Explicit movement among coherence domains

• Configuration parameters
• Switch between coherent/explicit modes
• Coherence modes

New Interfaces

• Machine representation and introspection

• Power monitoring and control

• Resilience interface

• Data collection interfaces

Vision: Migration path

Existing models will
keep improving

• OpenMP
• Language enhancements
• Runtime scalability

• MPI
• Scalability
• Resilience
• Shared memory
• Support for multithreading

Phased migration

• Applications are already being rewritten to introduce node-level
parallelism

• Introducing new paradigms at the node level may be easier

Phased migration

Stateless, vectorizable, efficient
computational kernels

run on each core

Node-local control flow (serial)

Inter-node/inter-device (distributed)
parallelism and resource management

Threaded Processes

Communicating
Sequential
Processes

Stateless kernels

computational node
with manycore CPUs

and / or
GPGPU

network of
computational nodes

Phase 1 Parallel Refactoring
Phase 2 Parallel Refactoring

Intra-node (manycore) parallelism and
resource management

Clean Slate Migration

Current Full-featured App
- Classic parallel app design.
- Full modeling capabilities.
- Scalable on classic systems.

New Minimal-feature App
- “Clean slate” development.
- New parallel app design.
- Minimal modeling capabilities.
- Scalable on future systems.

Future Full-featured App
- New parallel app design.
- Full modeling abilities.
- Scalable on future systems.

Distill minimal modeling
capabilities needed
to represent data
movement and

dependency patterns.

Utilize new
design,

preserve
scalability.

Refactor and migrate
modeling capabilities
into new framework.

Vision:“Green field” path

Wish list

• Separation of roles

• Reuse

• Automation

• Support for checking and debugging tools

DSL centric
development

Manual Refinement

Exec

Resilience

Domain
Algorithms

Expert

DSL
Designer

DSL Compiler

Parameterized
Abstract

Machine Model

Refinement/
Transformations

Refinement/
Lowering

Execution Level
Abstractions

Performance
Tools

Runtime

Scalable Data
StructuresDSL 1 ..N

Specification

Implementation
Expert

DSL 1 ..N
Programs

DSL Compiler Generator

Recording & Mapping

Synthesis-based
Transformations

Runtime Optimizations

Role for research

• Ongoing research is needed to resolve open questions related to
the uncertainty around hardware features, and is the best

approach for dealing with them, and uncover the potential for
radically improved productivity from higher-level programming

models.

• Need good metrics

• Need a good approach to transition research into production

Report of the 2014
Programming Models

Workshop
Michael Garland Nvidia Mary Hall University of Utah

Michael Heroux Sandia Natl Labs Larry Kaplan Cray Inc

Richard Lethin Reservoir Labs Kathryn O’Brien IBM

Vivek Sarkar Rice John Shalf LBL

Mark Snir ANL/UIUC Armando Solar-Lezama MIT

Thomas Sterling Indiana University Katherine Yelick UC Berkeley

