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RAJA is designed to facilitate architecture 
portability for LLNL multi-physics codes 

§  We need a portability mechanism that:  
•  Can express various forms of parallelism (primarily on node) and be 

used with different programming models 
—  We do not want to bind our codes to a particular technology 

•  Simplifies portability and doesn’t overburden maintenance 
•  Can be explored in our codes incrementally and used selectively 

§  Key RAJA goal: simple integration with legacy codes 
•  The fundamental conceptual abstraction is a loop 
•  Basic insertion enables “zeroth-order” portability 
•  Once in place, a wide range of architecture-specific tunings can be 

pursued without disrupting the application source code 

§  RAJA is based on standard C++ 
•  It is lightweight and adapts to concepts used heavily in LLNL codes 
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•  Data type encapsulation  
    Hides non-portable compiler directives, data attributes, etc. 
    (not required for RAJA use, but a good idea in general) 

•  Traversal template & execution policy 
    Encapsulate platform-specific scheduling & execution and code-specific 
    iteration patterns (typically a limited number of patterns per code) 

•  Index set 
    Encapsulate iteration space partitioning & data placement 

•  C++ lambda function 
    Captures loop body without modification (essential for RAJA adoption) 

double* x ; double*y ; 
double a ; 
// … 
for ( int i = begin; i < end; ++i )  { 
     y[ i ] += a * x[ i ] ; 
} 

C-style for-loop 
Real_ptr x;   Real_ptr y ; 
Real_type a ; 
// … 
forall< exec_policy >( IndexSet, [&] (Index_type i)  { 
     y[ i ] += a * x[ i ] ; 
}  ); 

RAJA-style loop 

RAJA encapsulates architecture-specific 
concerns through four cooperating features  

The main difference between existing code and RAJA-style code is that loop 
headers are replaced by calls to iteration templates (living in headers). 
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§  A multi-physics code contains O(10K) for-loops, but only a few 
dozen loop patterns 

§  Our goal is to implement a distinct execution strategy for each 
loop pattern once, and leverage it many times 
•  Execution choice depends on policy specification and loop segment 

type – compile-time optimization + run-time iteration space definition 
•  Abstraction at this level allows fine-grained control of > 95% of 

computational work in a typical code 

§  Careful categorization of iteration patterns is the key to a 
successful RAJA implementation, based on: 
•  Memory movement intensity 
•  Compute intensity (operations per byte moved) 
•  Control flow branching intensity 

RAJA encapsulates common loop 
iteration patterns 
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RAJA segments* can be tuned/sized for 
architecture or memory configurations 

*A RAJA Segment is a bundle of loop iterations 
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Indirection arrays can be split into segments 
specialized for optimization 

§  A “Range” segment defines a contiguous set of iteration 
indices (with iteration/alignment constraints) 
   for (int i = begin; i < end; ++i) loop_body(i) ; 

§  An “List” segment bundles iterations that do not meet the 
Range segment criteria 
   for (int i = 0; i < seglen; ++i) loop_body( segment[i] ) ; 

§  Segment construction can impose runtime constraints that 
complement compile-time pragmas and optimizations 
•  For example, Range segments can be aligned multiples of SIMD or 

SIMT widths to enable generation of more efficient code 

Range segment (8 iterations) List segment (8 iterations) 

Array 
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Segments can be used to transform operations 
for data-parallel execution 
§  A common operation in a staggered-mesh 

code sums values to nodes from surrounding 
zones; i.e., nodal_val[ node ] += 
zonal_val[ zone ] 

§  Index set segments can be used to define 
independent groups of computation (colors) 

§  Option A (~8x speedup w/16 threads – 
TLCC2): 
•  Iterate over groups sequentially (group 1 

completes, then group 2, etc.) 
•  Operations within a group execute in parallel 

§  Option B (~17% speedup over option A): 
•  Zones in a group (row) processed sequentially 
•  Iterate over rows of each color in parallel 
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No app. source code change is needed to switch 
between iteration / parallel execution patterns. 
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§  Thread parallel codes rely on locking and 
synchronization primitives for correctness 
•  This introduces extra overhead and maintenance that RAJA 

can help alleviate and simplify 
•  Dependence graphs can eliminate overheads by replacing 

fine grained strategies with coarse grained synchronization 
§  RAJA also can provide a simplified model to 

address recovery from common transient faults  
•  This mechanism can be bundled with an execution strategy 
•  This mechanism requires some (usually) minor code 

changes, but is less intrusive and has better performance 
than alternatives 

•  Fully-functional solution requires additional hardware, O/S, 
and language support 

RAJA supports dependence graphs and a 
mechanism for transient fault recovery 
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The RAJA version of LULESH demonstrates 
many strengths of RAJA in a small code base 
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RAJA dependence graphs (OMP LF) allow coarse-grained synchronization 
to overcome performance deficiencies in common PM usage. 
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The prototype CoMD port to RAJA allows 
algorithms to more easily exploit symmetry  
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RAJA dependence graph guarantees mutual exclusion and thus 
allows CoMD to exploit symmetry when using OpenMP. 
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RAJA can also simplify code, as shown in 
this CoMD example 

•  Here, a wavefront-ordered RAJA IndexSet is used to schedule work 
for execution – IndexSets supporting different policies can also be used 

 
•  Many low level details are hidden behind the RAJA interface that 

otherwise must be repeated for each loop in the code 
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§  RAJA is responsible for: 
•  Providing an interface to execute loop kernel iterations 
•  Launching kernels in the hardware & PM environment 
•  Managing type safety/optimizations within memory spaces 

§  Applications are responsible for: 
•  Partitioning problem into “coherence domains” 
•  Allocating data in coherence domains and transferring data 

between them (this may eventually be supported by RAJA) 
•  Invoking proper RAJA loop iteration patterns and execution 

scheduling (extract as much parallelism as possible) 

Application and RAJA responsibilities are 
clearly delineated  

Several LLNL ASC codes are incrementally moving toward RAJA adoption 
using custom approaches that match code team culture and goals. 
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But, fine-grained OpenMP overhead too high for 
most inner loop threading independent of RAJA 

•  Ares (coarse threads) – 
baseline for comparison: 

•  M x T domains 
•  T  domains / rank 
•  27 OpenMP domain 

loops / timestep 

•  Ares-RAJA (fine threads): 
•  M domains 
•  1 domain / rank 
•  372 OpenMP inner 

loops / timestep 

•  M = # MPI ranks 
     T = # threads / rank 
     M x T = 64 (all runs) 

A large multi-physics application may need thousands of threaded 
regions per timestep to exploit a many-core architecture. 

Still, we’re within 10%... 
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§  A PM can only perform as well as the 
implementation of the PE that supports it 
•  Current PE components generate unpredictable results 
—  Compiler optimizations are wildly inconsistent 
—  PM implementations often short-circuit compiler optimizations 
—  PMs (eg., OpenMP) often don’t allow clean programming 

language encapsulation 

•  Thus, PMs also generate unpredictable results when 
ported to different compilers, runtimes, O/S 
—  This is compounded by different features in processors, 

memory subsystems, etc. 
—  Some workarounds are possible, but can be difficult to 

manage in applications 

PM/E concerns from an (ASC) app 
perspective  
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Close interaction with vendors has yielded 
successes… 

Intel has resolved (SIMD) optimization issues related to C++ lambda 
variable capture based on interactions with us. 

Before: lambda capture dropped restrict 
After: restrict propagated to lambda 
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…but, many other issues remain 
unresolved 

RAJA-lambda loops runtime relative 
to C-style loops (gnu) 

RAJA-functor loops runtime relative to 
C-style loops (xlc) 

Currently, combining OpenMP and C++ templates stymies  
many compiler optimizations. 

Up to 20%  
difference 

Up to 20x  
difference! 
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Software engineering alone is not enough – 
we need help from vendors too 

A relatively small investment in compilers and runtimes – compared to 
HW – can have a huge, lasting impact on the performance of our codes! 

§  We have documented compiler deficiencies and developed benchmarks to 
understand them and work with vendors to fix them 
•  “A Case for Improved C++ Compiler Support to Enable Performance Portability in Large Physics 

Simulation Codes”,  Rich Hornung and Jeff Keasler, LLNL-TR-653681.   
•  “LCALS: Livermore Compiler Analysis Loop Suite”, Rich Hornung. LLNL-CODE-638939. 

 
Both available at https://codesign.llnl.gov 

§  We (HPC community) must tell 
vendors what we need 

§  Good solutions involve 
negotiations (our needs, vendor 
priorities, language standards, 
vendor extensions, etc.) 

§  We also must track version-to-
version compiler performance 

Evaluate 
vendor fixes 

Identify 
issues 

Build test 
cases 

Propose 
vendor fixes 

Co-design 
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§  Key language features are missing for: 
•  Maintainable compile-time fusion of algorithmic 

structures 
•  Maintainable data layout and memory space 

management 
•  Such things are doable with S/W engineering, but can 

be ugly/hackish without direct support 

§  In lieu of a “silver bullet” PM, the best we can do 
is encapsulate (compose best/worst of PM/E?) 
•  Encapsulation boundaries need to be considered 

carefully so that app developers do not need to adjust 
these boundaries for exotic, new architectures 

PM/E concerns from an (ASC) app 
perspective  
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§  A language that tries to hide locality or control flow is not 
a friend of HPC software developers 
•  E.g., automatic decisions about when to send messages, how 

much data to pack, etc. will (almost always?) do worse than 
skilled developers who write their own schedules 

•  Just-in-time control flow (e.g., task-based models) is hard to 
reason about during debugging and algorithm construction 
—  Good tools are essential to make such approaches viable 

§  Asynchronous point-to-point messaging and coarse-
grained synchronization primitives are key to successful 
task-based and data-driven models (including MPI) 
•  Models should support these and other core features to build on 

without feature bloat (also, a reference implementation – akin to 
MPICH – would help task-based PMs become mainstream) 

PM/E concerns from an (ASC) app 
perspective  
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§  The structures of successful, production, large 
multi-physics codes are good guides for PM 
requirements 
•  Many codes have arrived at similar organizational 

structures  
—  Coherence domains, encapsulation of communication/

synchronization, centralized data allocation/management, etc. 

•  “CS” concepts have evolved from balancing 
requirements, not random coding practices 
—  Main drivers: physics algorithm & model flexibility, and 

software maintenance 

Suggestion for PM/E development from 
(ASC) app perspective  




