
LLNL-PRES-668094
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

The RAJA Portability Layer
Joint DOE/SC-NNSA PM/E Workshop

Rich Hornung, Jeff Keasler

March 9-11, 2015, Rockville, MD

Lawrence Livermore National Laboratory LLNL-PRES-668094
2

RAJA is designed to facilitate architecture
portability for LLNL multi-physics codes

§  We need a portability mechanism that:
•  Can express various forms of parallelism (primarily on node) and be

used with different programming models
—  We do not want to bind our codes to a particular technology

•  Simplifies portability and doesn’t overburden maintenance
•  Can be explored in our codes incrementally and used selectively

§  Key RAJA goal: simple integration with legacy codes
•  The fundamental conceptual abstraction is a loop
•  Basic insertion enables “zeroth-order” portability
•  Once in place, a wide range of architecture-specific tunings can be

pursued without disrupting the application source code

§  RAJA is based on standard C++
•  It is lightweight and adapts to concepts used heavily in LLNL codes

Lawrence Livermore National Laboratory LLNL-PRES-668094
3

•  Data type encapsulation
 Hides non-portable compiler directives, data attributes, etc.
 (not required for RAJA use, but a good idea in general)

•  Traversal template & execution policy
 Encapsulate platform-specific scheduling & execution and code-specific
 iteration patterns (typically a limited number of patterns per code)

•  Index set
 Encapsulate iteration space partitioning & data placement

•  C++ lambda function
 Captures loop body without modification (essential for RAJA adoption)

double* x ; double*y ;
double a ;
// …
for (int i = begin; i < end; ++i) {
 y[i] += a * x[i] ;
}

C-style for-loop
Real_ptr x; Real_ptr y ;
Real_type a ;
// …
forall< exec_policy >(IndexSet, [&] (Index_type i) {
 y[i] += a * x[i] ;
});

RAJA-style loop

RAJA encapsulates architecture-specific
concerns through four cooperating features

The main difference between existing code and RAJA-style code is that loop
headers are replaced by calls to iteration templates (living in headers).

Lawrence Livermore National Laboratory LLNL-PRES-668094
4

§  A multi-physics code contains O(10K) for-loops, but only a few
dozen loop patterns

§  Our goal is to implement a distinct execution strategy for each
loop pattern once, and leverage it many times
•  Execution choice depends on policy specification and loop segment

type – compile-time optimization + run-time iteration space definition
•  Abstraction at this level allows fine-grained control of > 95% of

computational work in a typical code

§  Careful categorization of iteration patterns is the key to a
successful RAJA implementation, based on:
•  Memory movement intensity
•  Compute intensity (operations per byte moved)
•  Control flow branching intensity

RAJA encapsulates common loop
iteration patterns

Lawrence Livermore National Laboratory LLNL-PRES-668094
5

RAJA segments* can be tuned/sized for
architecture or memory configurations

*A RAJA Segment is a bundle of loop iterations

18 19 20

9 10 11

0 1 2

21 22 23

12 13 14

3 4 5

24 25 26

15 16 17

6 7 8

Segments for
mesh memory in
canonical order

6 7 8

3 4 5

0 1 2

15 16 17

12 13 14

9 10 11

24 25 26

21 22 23

18 19 20

Segments for
mesh memory in

tiled order

Lawrence Livermore National Laboratory LLNL-PRES-668094
6

Indirection arrays can be split into segments
specialized for optimization

§  A “Range” segment defines a contiguous set of iteration
indices (with iteration/alignment constraints)
 for (int i = begin; i < end; ++i) loop_body(i) ;

§  An “List” segment bundles iterations that do not meet the
Range segment criteria
 for (int i = 0; i < seglen; ++i) loop_body(segment[i]) ;

§  Segment construction can impose runtime constraints that
complement compile-time pragmas and optimizations
•  For example, Range segments can be aligned multiples of SIMD or

SIMT widths to enable generation of more efficient code

Range segment (8 iterations) List segment (8 iterations)

Array

Lawrence Livermore National Laboratory LLNL-PRES-668094
7

Segments can be used to transform operations
for data-parallel execution
§  A common operation in a staggered-mesh

code sums values to nodes from surrounding
zones; i.e., nodal_val[node] +=
zonal_val[zone]

§  Index set segments can be used to define
independent groups of computation (colors)

§  Option A (~8x speedup w/16 threads –
TLCC2):
•  Iterate over groups sequentially (group 1

completes, then group 2, etc.)
•  Operations within a group execute in parallel

§  Option B (~17% speedup over option A):
•  Zones in a group (row) processed sequentially
•  Iterate over rows of each color in parallel

4 3 4 3 3
2 2 1 1 1

4 3 4 3 3
2 2 1 1 1

2 2 1 1 1

2 2 2 2 2
1 1 1 1 1

2 2 2 2 2
1 1 1 1 1

1 1 1 1 1

Option A

Option B

No app. source code change is needed to switch
between iteration / parallel execution patterns.

Lawrence Livermore National Laboratory LLNL-PRES-668094
8

§  Thread parallel codes rely on locking and
synchronization primitives for correctness
•  This introduces extra overhead and maintenance that RAJA

can help alleviate and simplify
•  Dependence graphs can eliminate overheads by replacing

fine grained strategies with coarse grained synchronization
§  RAJA also can provide a simplified model to

address recovery from common transient faults
•  This mechanism can be bundled with an execution strategy
•  This mechanism requires some (usually) minor code

changes, but is less intrusive and has better performance
than alternatives

•  Fully-functional solution requires additional hardware, O/S,
and language support

RAJA supports dependence graphs and a
mechanism for transient fault recovery

Lawrence Livermore National Laboratory LLNL-PRES-668094
9

The RAJA version of LULESH demonstrates
many strengths of RAJA in a small code base

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 4 8 16

W
al

l t
im

e
re

l.
to

 b
as

el
in

e

Num Threads/Workers

LULESH-RAJA relative wall time on TLCC2
(baseline is v1.0 OpenMP)

RAJA OMP

RAJA CilkPlus

RAJA OMP LF

RAJA dependence graphs (OMP LF) allow coarse-grained synchronization
to overcome performance deficiencies in common PM usage.

Lawrence Livermore National Laboratory LLNL-PRES-668094
10

The prototype CoMD port to RAJA allows
algorithms to more easily exploit symmetry

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

rzmerl icpc ljforce
microseconds/atom

orig

RAJA

wavefront

symm

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16

rzmerl gcc eam
microseconds/atom

orig

wavefront

symm

Threads Threads

RAJA dependence graph guarantees mutual exclusion and thus
allows CoMD to exploit symmetry when using OpenMP.

Lawrence Livermore National Laboratory LLNL-PRES-668094
11

RAJA can also simplify code, as shown in
this CoMD example

•  Here, a wavefront-ordered RAJA IndexSet is used to schedule work
for execution – IndexSets supporting different policies can also be used

•  Many low level details are hidden behind the RAJA interface that

otherwise must be repeated for each loop in the code

Lawrence Livermore National Laboratory LLNL-PRES-668094
12

§  RAJA is responsible for:
•  Providing an interface to execute loop kernel iterations
•  Launching kernels in the hardware & PM environment
•  Managing type safety/optimizations within memory spaces

§  Applications are responsible for:
•  Partitioning problem into “coherence domains”
•  Allocating data in coherence domains and transferring data

between them (this may eventually be supported by RAJA)
•  Invoking proper RAJA loop iteration patterns and execution

scheduling (extract as much parallelism as possible)

Application and RAJA responsibilities are
clearly delineated

Several LLNL ASC codes are incrementally moving toward RAJA adoption
using custom approaches that match code team culture and goals.

Lawrence Livermore National Laboratory LLNL-PRES-668094
13

But, fine-grained OpenMP overhead too high for
most inner loop threading independent of RAJA

•  Ares (coarse threads) –
baseline for comparison:

•  M x T domains
•  T domains / rank
•  27 OpenMP domain

loops / timestep

•  Ares-RAJA (fine threads):
•  M domains
•  1 domain / rank
•  372 OpenMP inner

loops / timestep

•  M = # MPI ranks
 T = # threads / rank
 M x T = 64 (all runs)

A large multi-physics application may need thousands of threaded
regions per timestep to exploit a many-core architecture.

Still, we’re within 10%...

Lawrence Livermore National Laboratory LLNL-PRES-668094
14

§  A PM can only perform as well as the
implementation of the PE that supports it
•  Current PE components generate unpredictable results
—  Compiler optimizations are wildly inconsistent
—  PM implementations often short-circuit compiler optimizations
—  PMs (eg., OpenMP) often don’t allow clean programming

language encapsulation

•  Thus, PMs also generate unpredictable results when
ported to different compilers, runtimes, O/S
—  This is compounded by different features in processors,

memory subsystems, etc.
—  Some workarounds are possible, but can be difficult to

manage in applications

PM/E concerns from an (ASC) app
perspective

Lawrence Livermore National Laboratory LLNL-PRES-668094
15

Close interaction with vendors has yielded
successes…

Intel has resolved (SIMD) optimization issues related to C++ lambda
variable capture based on interactions with us.

Before: lambda capture dropped restrict
After: restrict propagated to lambda

Lawrence Livermore National Laboratory LLNL-PRES-668094
16

…but, many other issues remain
unresolved

RAJA-lambda loops runtime relative
to C-style loops (gnu)

RAJA-functor loops runtime relative to
C-style loops (xlc)

Currently, combining OpenMP and C++ templates stymies
many compiler optimizations.

Up to 20%
difference

Up to 20x
difference!

Lawrence Livermore National Laboratory LLNL-PRES-668094
17

Software engineering alone is not enough –
we need help from vendors too

A relatively small investment in compilers and runtimes – compared to
HW – can have a huge, lasting impact on the performance of our codes!

§  We have documented compiler deficiencies and developed benchmarks to
understand them and work with vendors to fix them
•  “A Case for Improved C++ Compiler Support to Enable Performance Portability in Large Physics

Simulation Codes”, Rich Hornung and Jeff Keasler, LLNL-TR-653681.
•  “LCALS: Livermore Compiler Analysis Loop Suite”, Rich Hornung. LLNL-CODE-638939.

Both available at https://codesign.llnl.gov

§  We (HPC community) must tell
vendors what we need

§  Good solutions involve
negotiations (our needs, vendor
priorities, language standards,
vendor extensions, etc.)

§  We also must track version-to-
version compiler performance

Evaluate
vendor fixes

Identify
issues

Build test
cases

Propose
vendor fixes

Co-design

Lawrence Livermore National Laboratory LLNL-PRES-668094
18

§  Key language features are missing for:
•  Maintainable compile-time fusion of algorithmic

structures
•  Maintainable data layout and memory space

management
•  Such things are doable with S/W engineering, but can

be ugly/hackish without direct support

§  In lieu of a “silver bullet” PM, the best we can do
is encapsulate (compose best/worst of PM/E?)
•  Encapsulation boundaries need to be considered

carefully so that app developers do not need to adjust
these boundaries for exotic, new architectures

PM/E concerns from an (ASC) app
perspective

Lawrence Livermore National Laboratory LLNL-PRES-668094
19

§  A language that tries to hide locality or control flow is not
a friend of HPC software developers
•  E.g., automatic decisions about when to send messages, how

much data to pack, etc. will (almost always?) do worse than
skilled developers who write their own schedules

•  Just-in-time control flow (e.g., task-based models) is hard to
reason about during debugging and algorithm construction
—  Good tools are essential to make such approaches viable

§  Asynchronous point-to-point messaging and coarse-
grained synchronization primitives are key to successful
task-based and data-driven models (including MPI)
•  Models should support these and other core features to build on

without feature bloat (also, a reference implementation – akin to
MPICH – would help task-based PMs become mainstream)

PM/E concerns from an (ASC) app
perspective

Lawrence Livermore National Laboratory LLNL-PRES-668094
20

§  The structures of successful, production, large
multi-physics codes are good guides for PM
requirements
•  Many codes have arrived at similar organizational

structures
—  Coherence domains, encapsulation of communication/

synchronization, centralized data allocation/management, etc.

•  “CS” concepts have evolved from balancing
requirements, not random coding practices
—  Main drivers: physics algorithm & model flexibility, and

software maintenance

Suggestion for PM/E development from
(ASC) app perspective

