Application Requirements for
Exascale PM/Es

Rob Hoekstra, Lori Diachin, Marc Snir, Dave Richards,
Wilf Pinfold, Pat McCormick, Josh ?, Robert Clay,
Stephane Ethier, Rob Egan, John Shalf, Ray Bair, Lucy
Nowell, Bill Harrod, Rich Brower, Phil Colella, Jackie
Chen, Rich Hornung, Amarasinghe, Tina Macaluso

Topics

At a high level (not specific to any one application) catalog the
application requirements at exascale that should be addressed by
the combination of Programming Models and Environments. This
will serve to conduct gap and coverage analysis of proposed PM/
E(s), and as a basis for measuring progress.

Consider extending parallelism through non-conventional
semantic constructs to enhance efficiency and scalability.

Describe the nature and importance of performance portability,
productivity/usability, performance, robustness, interoperability
with other PM/Es, and vendor support.

Discuss issues with trying to extend existing models (MP1+X), and
any barriers to adopting new PM/Es,

Topics V2

Catalog application requirements
Revolutionary semantic constructs

Portability vs. Performance vs. Productivity vs.
Robustness vs. Interoperability vs. Vendor
Support

Extending MPI+X vs. Revolutionary PM/Es

Application Requirements

What is an ideal programming model?

* A homogeneous programming model that hides the complexity of
multicore hosts, manycore accelerators, and inter-node messaging

— Nice but... not going to happen, not realistic

* For future systems, non-disruptive programming models with

lightweight runtime systems would be preferable
* Leave it to the application develo ’ T

Need better vector abstractions JGI X

ST GANOME NSTITVTT

SIMD code is hero work

— Relatively simple loop unrolling, but complex code changes
— Bioinformatics can’t expect many programmers at that level

Performance portability

— Different code (for a paper) necessary for each generation of processor
+ SW implementations for SSE2, SSE3, SSE4, GPU, Phi, FPGA

Application developers should no °)
inner workings of programming n What are the Abstractions of Execution (motifs) needed bly for hand-tuning
performance, scalable codes to represent this node? ns

= TRANSPARENT PROGRAMM

— Should have the option to access anc

* Okay... maybe not entirely. | think
promising for widely-used algoritl
what they can do for Particle-in-C

Some climate modeling requirements

~

3D Stacked

= A “reproducible” mode on exascale machines where repeated runs of the same chitecture for Exas
executable on the same number of threads is guaranteed to produce bit-for-bit
identical answers. For process-level development, not necessarily production.

= Offce of
GY | science

= Programming model and environment that allows frequent and deep

modification/replacement of highly specific/detailed algorithms.

= “support for teams” e.g. MPl communicators

= “mechanisms [that] permit the automated localized rewriting of software to use

DSLs”

= “hardened, tested and supported production-quality software”

add features (like double-affine SW)
ram applications

Conclusions — what’s keeping us
up at nlght (at least that'll fit on one slide)

= Multi-level memory models
+ Coherent memory spaces ease transition, but consensus that
application “hints” or explicit direction will be necessary.
= OpenMP scalability and portability

+ Even the best implementations have too much overhead to allow
fine-grained parallelism

« Will OpenMP 4.x be sufficient for targeting GPUs?

= Asynchronous Task Models
+ Research needed in how applications can easily express tasking

+ Growing consensus in its viability, but lots of unanswered
questions

+ Will domain-scientists revolt? Yes, if we don't have good...

= Tools

. Nee% for cross-platform, easy-to-use, scalable tools that focus on
insight

Lawrence Livermore National Laboratory e

Application Requirements

e Notion that we should start with PATTERNS

— Dwarves
— Motifs # Intersection of these three?
— Proxies # Union of these three?

* This would better allow the community to
distill down their priorities

* We have a long way to go in this regard...

Application Requirements

e Why?
— Edge cases dominate
— The sum of the pieces is not equal to the whole

— Are the proxies too ingrained with current HW
constraints?

e What can we do?

— Strive for a more mathematically rigorous definition of our
requirements

— Tighter interaction between domain scientists, computer
scientists and vendors

— Abstract machine models can map out PM requirements

Application Requirements

* What can we agree on?

— Task parallelism is our future...
e Whether we like it our not...
e But what does it look like?

— Open standards are needed
e But are we ready to define those standards?

— Hierarchy of PM/Es

» Task/data parallel low level constructs all the way up to DSLs
at the high level

* Application developers want to be able to drill down when it
is necessary (They are control freaks just like the rest of us!)

Revolutionary Semantic Constructs?

* More natural capture of parallelism?
— Are task-based parallel constructs the panacea
* Probably not... but they can help
 Can we win on all fronts?
— Performance, Portability & Productivity???
* Probably not, but they are not orthogonal

* One way or the other, propose something
concrete and let the application developers beat
on it.

— Acknowledge this can be detrimental to fundamental
research goals but it is a crucial bridge.

“We are so opposed to a new language that we would invent one inside of comments!”
Comment on OpenMP

Revolutionary Semantic Constructs?

e Low Level

— DAG-based tasking?
e Ubiquitous parallelism & Dependencies

— Does it work for all algorithms? Should it?

— Is the community ready to define a common abstraction/API?
Probably not...

* High Level
— Are DSLs our future?

— Can application developers relinquish that much control over
their code base?

— Are general purpose DSLs a pipe dream?
— Or are they becoming a more viable alternative to libraries?

Portability vs. Performance vs. Productivity vs.
Robustness vs. Interoperability vs. Vendor Support

 We are always willing to give up some degree
of performance for productivity & portability

— How Much? It Depends....

e Other communities place a premium on
“productivity”.
— Can we learn from them?

— Does this drive us away from the (1+epsilon)
rewrite philosophy?

— Can auto-tuning play a bigger role?

Portability vs. Performance vs. Productivity vs.
Robustness vs. Interoperability vs. Vendor Support

* |Interoperability

— Crucial when you are coupling disparate code bases (ala
libraries, etc.)

— Much less important when you own your code base

— Partitioning of hardware resources to avoid contention is
the starting point

* Vendor Support

— Why we need to drive the open standards, but can they
keep up?

— Vendors will optimize the subset of features that win them
the contract©

— Take advantage of other leverage points?

Extending MPI+X vs. Revolutionary PM/Es

* |If we drive MPI+X models for now, the vendors and
community will respond with solutions in this domain.

— We can get pretty far down the road on that!

* Big question is when must we change
— Optimization of resources problem

— Most application developers will wait until the perceived
payoff is big enough

— Application developers have to eat; Pay them to make the
leap of faith...

— ...because volunteer early adopters are probably not
enough

Themes/Closing Thoughts

Can we utilize patterns/abstractions more
effectively?

— Rigorous definition of constructs/patterns
Range of PM/Es from low to high

Try real apps in prototype PM/Es ASAP
Co-design communication is crucial

Revolutionary algorithms could still be the
biggest winner

Themes/Closing Remarks

Engage standards communities
— There will be failures but we can learn from them

Pay people to try the new stuff

What scares us silly!
— Lack of mature implementations of PEs

— Lack of tools

Overriding issue: HUMAN CAPITAL

— Domain Expert * Computer Scientist = ~0

Themes/Closing Remarks

* Urgency has escalated dramatically in the last
few years

* |f the codes are expected to run effectively on
the pre-Exascale platforms they need to
dramatically change “yesterday”.

 OR will the folks who play “wait and see” be
the winners?

