Characteristics of PM/PE(s) (set 1)

Mary Hall
University of Utah



What Tools Comprise the PE?

From workshop materials:

e Compilers

e Code transformation
e Code synthesis

e Code generation

e Debuggers
 Autotuning

* Runtime systems

e Workflow management
e Data analytics

e Visualization

e Storage management

Added during discussion:

Optimized libraries
Performance analysis and
visualization

Performance modeling
Correctness tools
Resilience tools

Software quality tools
Build-and-test frameworks
Virtualized testbeds



Performance and Correctness at Scale

Performance monitoring and analysis

— More sensors throughout hardware/software stack, sophisticated filters,
longer term vs. instantaneous measurements

— Includes power/energy management
Performance and correctness debugging

— Attribution to cause (h/w, s/w, multi-physics, etc.), in light of dynamic
adaptation

Verification for high thread counts
— Static and dynamic
Introspection as part of application
— Expert programmer builds performance expectations into application for self
diagnosis
Coverage testing (correction/performance) for execution environment
design space
— In light of dynamic application build and execute and resource availability
— e.g., Fault injection as part of testing process(?)
Support for verifiability of scientific results

— In light of bit flips, relaxed dependences, new communication-avoiding
algorithms, etc.

Data analytics and visualization
— Similar concerns to performance and correctness debugging (in situ)



Performance Portability

Domain-specific optimizations/languages/libraries
— Underlying architecture-aware mapping for high performance
Autotuning

— Currently baked into application through autotuning library, or
result of offline tool (a la SUPER, TUNE)

— Expand: Compiler-directed or express code variants and
optimization parameters at application level

— Integrate into application build process

Mid-level mapping tools (TiDA/HTA/Raja/Kokkos)
Dynamic code generation, compilation

— Opportunity to specialize for execution context
Run-time optimization



How Dynamic Is Application Build and Execution?”

* Dynamic code generation and JIT compilation

— Opportunity for architecture and input data
specialization

— Perhaps execution environment, too

 Autotuning

— Assemble code variants and adjust optimization
parameter values at run time

e Asynchronous Many-Task
— Incorporate into application specification

e Tolerance for non-deterministic execution?
Testing?

*This list should not necessarily be considered an endorsement by the panel.



