
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

The “Tilearchy” Programming Model

Charles R. Ferenbaugh
DOE Programming Environments Workshop

March 10, 2015

LA-UR-15-21682

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

!

Part I
A Brief Overview of the Tilearchy

(Thanks to Eric Nelson for some of these slides)

Slide 2

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  A model developed in LANL’s SoftWare Infrastructure for
Future Technology (SWIFT) Project, 2011-2013

§  A conceptual programming model for describing:
–  Hierarchical parallelism
–  Hierarchical data decomposition
–  Separation of physics kernels (algorithms) from CS drivers

(portability/performance)

§  Not a DSL, runtime library, or compiler technology
–  Implemented in SWIFT using explicit coding in C++, MPI,

OpenMP, some OpenCL (and even some assembly language)

What is this “tilearchy,” anyway?

Slide 3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED Slide 4

The basic idea: Match computation and
data storage to hardware, OS hierarchy

machine

node

core

job

process

thread

mesh/domain

tile

subtile/chunk

thread

subdomain

processing	

hardware

software	

operating	

context

SWIFT	
 integrated	

code	
 computation	

and	
 storage	
 hierarchy

L1	
 cache

NUMA	
 domain

L2	
 cache

NUMA	
 domain	
 main	
 memory

vector	
 unit vector	
 registervector

node	
 disk

storage	

hardware

L3	
 cache

node	
 main	
 memory

machine	
 disk

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED Slide 5

The basic idea: Match computation and
data storage to hardware, OS hierarchy

machine

node

core

job

process

thread

mesh/domain

tile

subtile/chunk

thread

subdomain

processing	

hardware

software	

operating	

context

SWIFT	
 integrated	

code	
 computation	

and	
 storage	
 hierarchy

L1	
 cache

NUMA	
 domain

L2	
 cache

NUMA	
 domain	
 main	
 memory

vector	
 unit vector	
 registervector

node	
 disk

storage	

hardware

L3	
 cache

node	
 main	
 memory

machine	
 disk
“tilearchy”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED Slide 6

Full problem domain is partitioned into
subdomains

machine

node

core

job

process

thread

mesh/domain

tile

subtile/chunk

thread

subdomain

processing	

hardware

software	

operating	

context

SWIFT	
 integrated	

code	
 computation	

and	
 storage	
 hierarchy

L1	
 cache

NUMA	
 domain

L2	
 cache

NUMA	
 domain	
 main	
 memory

vector	
 unit vector	
 registervector

node	
 disk

storage	

hardware

L3	
 cache

node	
 main	
 memory

machine	
 diskSimilar to what we currently do
for MPI ranks, except:
•  only one rank per NUMA

domain
•  not necessarily executed in

bulk-synchronous mode

tilearchy

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED Slide 7

Subdomains are partitioned into tiles

machine

node

core

job

process

thread

mesh/domain

tile

subtile/chunk

thread

subdomain

processing	

hardware

software	

operating	

context

SWIFT	
 integrated	

code	
 computation	

and	
 storage	
 hierarchy

L1	
 cache

NUMA	
 domain

L2	
 cache

NUMA	
 domain	
 main	
 memory

vector	
 unit vector	
 registervector

node	
 disk

storage	

hardware

L3	
 cache

node	
 main	
 memory

machine	
 disk

•  Subdomain driver loops
over tiles (threaded)

•  Code at the tile level
and below is single-
threaded

tilearchy

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED Slide 8

machine

node

core

job

process

thread

mesh/domain

tile

subtile/chunk

thread

subdomain

processing	

hardware

software	

operating	

context

SWIFT	
 integrated	

code	
 computation	

and	
 storage	
 hierarchy

L1	
 cache

NUMA	
 domain

L2	
 cache

NUMA	
 domain	
 main	
 memory

vector	
 unit vector	
 registervector

node	
 disk

storage	

hardware

L3	
 cache

node	
 main	
 memory

machine	
 disk

•  Tile size is chosen to
(usually) fit in L2 cache

•  Tiles may be divided into
subtiles that fit in L1
cache, if needed

tilearchy

Tiles are sized to make best use of the
memory hierarchy

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED Slide 9

Kernels are executed on tiles

machine

node

core

job

process

thread

mesh/domain

tile

subtile/chunk

thread

subdomain

processing	

hardware

software	

operating	

context

SWIFT	
 integrated	

code	
 computation	

and	
 storage	
 hierarchy

L1	
 cache

NUMA	
 domain

L2	
 cache

NUMA	
 domain	
 main	
 memory

vector	
 unit vector	
 registervector

node	
 disk

storage	

hardware

L3	
 cache

node	
 main	
 memory

machine	
 disk

•  Tile/subtile drivers
execute highly optimized
algorithm kernels on
data in cache

tilearchy

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Driver/kernel separation facilitates development
–  Tile drivers and kernels written by domain scientists
–  Higher-level drivers written by CS/architecture experts
–  Nearly all performance and portability features (parallelism, fault-

tolerance, …) reside in high-level drivers
•  Main exception: vectorization is in kernels

§  Functional model
–  Kernels must be stateless, with separate inputs and outputs
–  Aids reasoning about composition, fault-tolerance, …

§  Central data store is tile-based, not global
–  Supports data locality, migration, …

Tilearchy advantages beyond
performance

Slide 10

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED Slide 11

TN burn app scales to all 136288 cores on
Cielo, 1.7T zones at 0.36 Pflop/s (28% of peak)

10K zone tiles, 360 zone subtiles

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Main SWIFT demo app: TN burn
–  Full app prototyped
–  Scales to all 133K cores of Cielo, runs at 28% of peak

§  Other SWIFT apps: cell-centered hydro, rad diffusion
–  Lower-level drivers prototyped
–  Not developed as far as TN Burn, but enough for proof of

concept

§  ENAMR (Evaluating a New AMR)
–  Experiment underway now to extend tilearchy to Eulerian AMR
–  If successful, this approach will be used to modernize the ASC

XRage code

Tilearchy examples

Slide 12

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

!

Part II
Some Answers to Workshop Questions

(inspired by Tilearchy experience)

Slide 13

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Programming model
(conceptual)

Low-level
Implementation

Higher-level
Implementation
(part of environment)

Distributed parallel,
message passing

TCP/IP, IBVerbs, … MPI

Shared-memory parallel Pthreads, PTX, … OpenMP, OpenACC;
RAJA, Kokkos, …

Hierarchical parallelism
and data decomposition
(tilearchy)

MPI + (OpenMP,
OpenCL, CUDA, …)

[To be determined]

How are programming models differentiated
from programming environments?

Slide 14

My (partial) answer:
Model is conceptual, environment is concrete…

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Need a way to naturally represent processing hierarchy
§  Some approaches that do this:

–  OpenMP 4.0 (threads/teams/league)
–  OpenACC (workers/gangs)
–  Sequoia – Stanford
–  Hierarchically Tiled Arrays – Illinois
–  Tiling as a Durable Abstraction (TiDA) – LBNL

§  Some (most?) of these have only a fixed set of levels –
can they be generalized?

What are new abstractions for parallelism at
exascale? How should parallelism be identified
and concurrency managed?

Slide 15

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  OpenMP 4.0, OpenACC have partial solutions
–  Distinction between host/device memories
–  Limited ability to specify tiling/locality
–  Needs to be more general?

§  Some other approaches may be more complete
–  Kokkos (Tile<M, N>)
–  Sequoia
–  Hierarchically Tiled Arrays
–  TiDA

What are programming abstractions to
represent data and its distribution?

Slide 16

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Represent and store persistent objects in a hierarchical
way, to match the data hierarchy

§  In particular, don’t assume that all problem data is stored
in a single contiguous array!
–  Not even within a single rank, thread, or NUMA domain
–  For example, in SWIFT’s implementation, data is contiguous only

within each individual tile
–  So we need persistence/storage interfaces that don’t require

contiguous data (e.g., not POSIX fread/fwrite)

How should PM/E represent persistent
objects and the storage system?

Slide 17

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Resilience should be primarily a driver-level property, not
kernel-level
–  Don’t burden the domain scientists with it
–  Have well-defined bounds on what code is executed, what data is

modified by each driver
–  This means driver writers can reason more about how to recover

from faults

§  Debugging should be easier with driver/kernel separation
–  Debugging of algorithms mostly at kernel level
–  Debugging of CS implementation issues mostly at driver level

Are there innovative ideas for integrating
resilience and debugging into the
programming model?

Slide 18

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Find flexible ways to store/access state data in central
DataStore

§  Database community may be able to help here
–  SWIFT experimented with a relational database model; this

merits further investigation

Are there lessons to be learned from
other communities that we can apply?

Slide 19

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

!

Questions?
cferenba@lanl.gov!

Slide 20

