Fusion Applications Requirements for
Programming Models and Environments
in the Exascale Era

Stéphane Ethier

Princeton Plasma Physics Laboratory

With inputs from
Kamesh Madduri (PSU), Sam Williams (LBNL),
Ed D’Azevado (ORNL) and Pat Worley (ORNL)

DOE Workshop on Exascale Programming Models and Environments
Mar 9-11, 2015

®))PPPL

- PRINCETON
PLASMA PHYSICS
LABORATORY

Background

* Simulations of fusion-relevant plasmas confined in a torus-
shaped magnetic bottle called “tokamak”

* “Fusion-relevant” means plasma temperatures of 100 million+
degrees

* Biggest challenge: ITER

* Much larger than current
tokamaks

 “Burning plasma” experiments
* Will require prediction of each
tokamak shot
e Ultimate goal is “whole
device modeling” (WDM)

Whole device modeling is extremely challenging

 The important physics spans
huge range of spatial and
temporal scales

* Overlap in scales often means
strong (simplified) ordering not
possible

* Transport codes use fluid
approach with “reduced”
models to simulate full discharge
(few seconds)

— Can miss some important physics
hard to capture with models

— Difficult to find enough parallelism

atomic mfp electron-ion mfp

skin depth system size

tearing length

ion gyroradius

debye length

electron gyroradius

Spatial Scales (m)

106 104 102 100 102

pulse length

Inverse ion plasma frequency current diffusion

inverse electron plasma frequency confinement

ion gyroperiod lon collision

e|eﬂ)n gyroperiod electron collision

1010 10° 100 10°
Temporal Scales (s)

The Gyrokinetic approach

e Startin the middle and do first
principles calculation

* Try to expand on “both sides”

e Kinetic approach naturally
capture the important physics
(turbulence, resonances, etc.)

* The particle-in-cell algorithm is
currently the most promising
approach to achieve exascale
level

— Lots of parallelism (200 billion
particles, 100 million grid points
to simulate ITER)

atomic mfp electrgn-ion mfp

skin depth system size

tearing length

ion gyroradius i

debye length

electron gyroradius

Spatial Scales (m)

106 104 102 100 102

pulse length

Inverse ion plasma frequency current diffusion

inverse electron plasma frequency confinement

ion gyroperiod lon| collision

e|eﬂ)n gyroperiod electron collision

1010 10° 100 10°
Temporal Scales (s)

The Particle-in-Cell method in a nutshell

* Particles sample distribution function
* Interactions via the grid, on which the potential is calculated

(from deposited charges).

 100-1000X more particles than grid points
* Grid resolution dictated by Debye length or gyroradius

The PIC Steps

||
[OXC)

A0

N

(

ne

gl ©

)

e

S T@

uE

-
N
|

“SCATTER?”, or deposit,
charges on the grid (nearest
neighbors)

Solve Poisson equation
“GATHER?” forces on each
particle from potential
Move particles (PUSH)
Repeat...

Added computational complexity due to
“Gyrokinetic” approach

* Fast helical motion of @/@@@@/@ :

charged particles in strong o
magnetic field integrated out /O@’O

in gyrokinetic equation @\@@

— Helical motion replaced by

moving rings of dynamically
changing radius

Charge Deposition Step (SCATTER operation)

i

— No need to resolve the helical
motion = larger time step

|
|
¥

N
o

* Complicates charge b

A <N
deposition step hY

— Random access to memory |

unless particles are sorted Classic PIC 4-Point Average GK
(W.W. Lee, JCP 1987)

N

‘L_Z:?_.,\

XGC1 code for plasma edge turbulence

e Comprehensive first
principles code

* Move particles along the
characteristics = ODE
equation (RK4)

* Solve the self-consistent
field =» PDE equation
solved using PETSc
(preconditioner Hypre,
KSP GMRES)

e Kineticions + electrons
(real mass ratio)

XGC1’s programming models

* MPI + OpenMP + CUDA Fortran for
GPU

* Top level = MPI
— Toroidal domain decomposition
— Multi-process particle distribution
within toroidal domains (require
careful load balance)

— Grid-based solver splits matrices
between processes within each
toroidal domain (finite element
solver), implemented with PETSc

library
* Fine-grained OpenMP at loop level

e CUDA Fortran for electron time-
advance on GPU

Average Seconds per lon Timestep

I 7R
Lo S,
[, N VAP TRARNAR
RRESARIR VPRI lstt,
AN, Y KSR
S NS i e
SN iV S Y e
SO s
NSNS S
R O B Sy
BAS SEASSEX] I DS S RERY
R SN S NS DRI
R N NS S SV g KRS
B R R SRS R VAR K DESS ey
A Y B S pa Sty
BRSNS RV RSOOSR
T W BT
SR R IS OO0
RIS RIS NN SRV OOOOEZRIEN
BRI SIS pYAVAVATAV: 7, SENS)
B a0a a8
S N v A v SN R S
B R A A O SRR
BRI A DOS AS N RO,
R A A O DA DGR R
v VAP SV
KA SO0 TR
e VATAVAR A VAAYAYAYG UV Y KT
= osravaravas SOy AR SN s
o eravavavat s e i py Y L
BRI AASNRLA KT S RGOS
SRR COAANR SN SO
PR OOAATKT RN s Tolaeey
vy A NN SR
e AT VS R st
KX buhmmﬂﬂ(i’ AAA\“ AT ATATS
o N S e
PRERE AT RIS
RS K NN ERRERRS
S Ay, CRERIRREK
S NS
R el NSNS
KPR NN e
‘iw‘:a(;(////um R
. §ﬁ'¢a~4’)4‘ A\m X
VAl AN
S AT
e Ny
S o e
e Qe s
i A S
SEAINRES)

oy
)
R
N

£1

o
3

S

R
%
Ay
YAY:

]

PAViS
ras
v

4

YaY
25
oS

g

AV
SIS
ma

VAVAezarzal

S
=4

A
DS
v

AvIAYav,
=5

5t e

R
v,

AAIEHI

A

X
%N

2L

XGC1 Performance: Weak Particle Scaling on DIII-D grid

T

T

200 T T T
IBM BG/Q

200K particles per core =——+—
Cray XE6

200K particles per core

100K particles per core
Cray XK7

200K particles per core —#—
Cray XC30

200K particles per core

133K particles per core —s=—

150

A

T

w

100 -
50 [— L |
o i i i i i i i i

64 128 256 512 1024 2048 4096 8192 16384 32768

Compute Nodes

What is an ideal programming model?

* A homogeneous programming model that hides the complexity of
multicore hosts, manycore accelerators, and inter-node messaging

— Nice but... not going to happen, not realistic

* For future systems, non-disruptive programming models with
lightweight runtime systems would be preferable

 Some scientists say: Leave it to the application developers to
optimize performance. Application developers should not have to
fight with or guess the inner workings of programming models in
order to write high performance, scalable codes

= TRANSPARENT PROGRAMMING MODEL

— Should have the option to access and control low level hardware

* Okay... maybe not entirely. | think that the work on DSLs is very
promising for widely-used algorithms (e.g. stencils). Not sure about
what they can do for Particle-in-Cell though...

Key new abstractions needed within the
programming models to achieve exascale?

Locality-aware loop partitioning strategies (OpenMP guided not good
enough on NUMA nodes)

Constructs to partition loops and data structures on host and
accelerator

Better thread-processor affinity control

The ability for programmers to spawn communication threads,
computation threads, and helper threads (to help the compute
threads with prefetching, etc.)

Better support for asynchronous 10, asynchronous compute-
communicate phases, asynchronous compute-compute phases

All of the above can be done today with Pthreads but very hard and
painful. Source-to-source compilers could take care of implementing
this while PM hides the complexity. Don’t try to automate everything
though. Still want to see the code transformations

Key new abstractions needed within the
programming models (continued...)

More specific to global GK PIC code like XGC1:

 Coherent access (or atomic updates) to large working sets

— All threads within a process may need shared random read-modify-write
access to O(100MB), the size of a poloidal plane (PIC “scatter” phase)

— The biggest gap in existing models is the performance of fine-grained
(increment 2 doubles) atomics or transactions (the most natural ways of
expressing this). This performance deficiency motivates complex
decompositions or replications. The former require inter-process
communication. The latter require extra memory. Both are unattractive
in the manycore limit.

 Dynamic runtime to support computation as directed acyclic graph

— To tolerate long latencies in data movement, utilize computing
resources, overlap data movement, communication, computation
(especially important for GPU-like architecture) (Habanero?)

What breakthrough in programming
environments is required for exascale?

Hiding the heterogeneity and memory hierarchy from the
programmer as much as possible, while still providing a practical set
of abstractions to exploit data locality and key hardware features

Domain Specific Languages and autotuning are certainly good
approaches for dealing with widely used algorithms that are well-
known (PDE solvers, FFT spectral solvers, etc.)
— In the short term we need efficient thread-safe libraries, in particular,
MPI library

— For XGC1, we need robust thread-safe PETSc library for solving multiple
independent systems (with profiling turned off please...).

Discuss how your application could utilize task-
based and data-driven programming models

Particle and grid data structure inter-dependencies in XGC1
(and other GK PIC codes, such as GTC and GTS) prevent
straightforward use of task-based programming models. Using
a task-based/data-driven programming model would probably
require re-writing the code from scratch.

However, some stages of the code could use task-based
parallelism, as demonstrated back in 2011 with the particle
shifting algorithm in GTS (Preiss| et al, SC11)

— Using a combination of OpenMP tasking and PGAS communications
implemented with Fortran co-arrays

How to manage the resiliency challenges in your
code?

* Write critical data to local NVRAM (burst buffers) to enable
fast restart

* If a code can checkpoint in less than a minute, then it is likely
that failure rates of about 1/hr can be endured with little
impact

 The programmer needs feedback from the system in order to
take action when an error/failure occur

— Occasional errors affecting a small number of particles is not
catastrophic. The code could continue the calculation by simply
reinitializing these particles

— Losing a whole node would certainly require restarting the simulation
from a previous time

What to do with periods of idle cores?

* |In XGC1 runs we have >1000 more particles than grid points

* During computations involving only grid data (e.g. field solver)
it is not efficient to engage all the cores. What to do?
— Power them down to save energy?

— Give them other tasks to do, such as diagnostics, analysis, rendering
for visualization, etc?

— Do some I/0, such as checkpointing?

* Application developers will need easy ways to implement
these possibilities (ability to spawn helper threads)
— Give hints to OS that now is a good time to power down some cores
— Easy way to separate groups of threads to work on different tasks

— Give external applications access to main simulation data (shared
space?)

Example: GoldRush (presented at SC13)

GoldRush: Resource Efficient In Situ Scientific Data
Analytics Using Fine-Grained Interference Aware
Execution

Fang Zheng', Hongfeng Yu? Can Hantas', Matthew Wolf',
Greg Eisenhauer’, Karsten Schwan', Hasan Abbasi®, Scott Klasky®

'Georgia Institute of Technology

ABSTRACT

Severe /O bottlenecks on High End Computing platforms call for
running data analytics in situ. Demonstrating that there exist
considerable resources in compute nodes un-used by typical high
end scientific simulations, we leverage this fact by creating an
agile runtime, termed GoldRush, that can harvest those otherwise
wasted, idle resources to efficiently run in situ data analytics.
GoldRush uses fine-grained scheduling to “steal” idle resources,
in ways that minimize interference between the simulation and in
situ analytics. This involves recognizing the potential causes of
on-node resource contention and then using scheduling methods
that prevent them. Experiments with representative science
applications at large scales show that resources harvested on
compute nodes can be leveraged to perform useful analytics,
significantly improving resource -efficiency, reducing data

University of Nebraska Lincoln

*0ak Ridge National Laboratory

generated. Compared to conventional post-processing methods
that first write data to storage and then read it back for analysis, in
situ analytics can reduce on-machine data movement, disk 1/O
volume, and deliver faster insights from raw data [2].

The research presented in this paper has two goals: (1) to improve
the resource efficiency of running in situ data analytics, and (2) to
do so without perturbing the simulations running on the same
nodes. In particular, we seek to over-subscribe compute nodes by
co-locating simulation and analytics computations, without
affecting the simulation execution, while at the same time,
efficiently using compute node resources to run in situ analytics.

Measurements of six representative scientific simulations

motivate the argument that node over-subscription can be cost
~n Ancnmann bmbmn tlans

wmmrrbmal bn tlhn mman Al dladlaee QA8 LA ..

7. ACKNOWLEGEMENTS
We thank Stéphane Ethier for his help with the GTS application
and visual analytics. We also thank the anonymous reviewers and

movement costs incurred by alternate solutions, and posing
negligible impact on scientific simulations.

Main Lopp TIme

Plenty of idle cycles in “rea

III

applications,

especially with MPI+OpenMP codes (and GPU!)

100%
80%
60%
40%
20%

0% o

— T — | —_ 1
'R ISR "R N ERiE R EE
] D Other Sequential
1 OMPI
q B OpenMP

1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072 | 1536 | 3072

SP-MZ SP-MZ SP-MZE

GTC GTS GROMACS | GROMACS | LAMMPS LAMMPS LAMMPS LAMMPS BT-MZ BT-MZ BT-MZ
(Class D) (Class E)

(D.DPPC) |(ADH_Cubic) (L) (EAM) (Chain) (Rhodopsin) | (Class C) (Class D) (Class E) (Class C)

(a) On Hopper, simulations run on 1056 (256 MPI proc. X 6 OpenMP threads) and 3072 cores (512 MPI proc. X 6 OpenMP threads).

Main Lopp TIme

100% — — -— -
— L] = [[N =] =
S EREE T IR :
60% A [. "
X 0 l D Other Sequential
40% 1 oMPI
20% 1 @ OpenMP
0% o ———
512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024 | 512 | 1024
GTC GTS GROMACS | GROMACS LAMMPS LAMMPS LAMMPS LAMMPS BT-MZ BT-MZ BT-MZ SP-MZ SP-MZ SP-MZE
(D.DPPC) |(ADH_Cubic) (L)) (EAM) (Chain) (Rhodopsin) (Class C) (Class D) (Class E) (Class C) (Class D) (Class E)

(b) On Smoky, simulations run on 512 (128 MPI proc. X 4 OpenMP threads) and 1024 cores (256 MPI proc. X 4 OpenMP threads).

NOTE: The ratios vary from one system to another!!

« Can we take advantage of this and run analyses on idle cores?
* |Is it feasible??

GoldRush: Monitor resources and run analyses

on idle OpenMP cores

Simulation Analytics
°
Prediction }f-=------=-= GoldRush
ADIOS
Monitoring Scheduler ADIOS

—:—+=—2> Monitoring Buffer [-——: -

Shared Memory
Data Buffer ¢

A 4

= Simulation Output Data =--2» Suspend/Resume Signals —--> Monitoring Data @

Particle visualization (parallel coordinates)

f

Harvest Idle Resources for In-Situ
Analytics

Dynamically predict idle resource
availability

Reduce interference with
execution throttling

Uses ADIOS FlexlO method
Overhead of GoldRush < 0.3%

1200
O GoldRush
B]/0

1100 1 O Analysis
B Sequential

1000 1 B OpenMP

Main Loop Time (Seconds)
O
(=}
S

GTSOnly Inline OSBase GoldRush

Conclusions

* There is a huge amount of parallelism in particle-in-cell codes
such as XGC1

 The main challenge is the gather-scatter operations between
particles and grid

Do we need to change the algorithm and get rid of the grid??

Thank you...

