

Genomic Application
Requirements

DOE Workshop on Exascale Programming
Models and Environments

Rob Egan
Joint Genome Institute / LBNL

2015-03-09

DOE Joint Genome Institute

2

Mission: to serve as a genomic user facility in support of the DOE’s interests in:

•  Walnut Creek, CA
•  Opened in 1999
•  250 employees
•  Partners: LBNL, LLNL, LANL,

PNNL, ORNL, Hudson Alpha

bioenergy, carbon cycling, & biogeochemistry

•  176 Total peer-reviewed publications
•  60 + High-Impact (>8 IF: e.g., Science, Nature, Cell,)
•  More than : 31,500 citations of JGI publications in FY14

-(JGI publications from 2008-13)

Key Publications in 2014
-  Codon Reassignments in the Wild, Science
-  Eucalyptus Genome, Nature
-  Citrus Genome, Nature Biotechnology
-  Common Bean Genome, Nature Genetics
-  White/Brown Rot Paradigm for Wood Decay, PNAS
-  IDing Livestock Gut Microbes Contributing to

Greenhouse Gas Emissions, Genome Research
-  Dead Sea Salt-Tolerant Fungus, Nature Comm
-  Prochlorococcus Single-Cell Genomics, Science
-  Largest Soil DNA Sequence Analysis Effort, PNAS
-  Duckweed Genome Biofuel Relevance, Nature

Communications
-  Monkey Flower Gene-shuffling Hotspots, PNAS

Science OutputàPublications

State of the Art Sequencing Capabilities
•  Illumina HiSeq (9)
•  Illumina MiSeq (4)
•  PacBio (2)
•  Oxford Nanopore

JGI Facility Overview

State of the Art Computing Capabilities
•  Infiniband Cluster 7500 cores (50-60M hours)
•  HighMem: 2TB, 3 x 1TB, 12 x 512G, 24 x 256GB
•  >2PB on GPFS + >4PB Tape (HPSS)

•  High I/O utilization
•  2M hours NERSC allocation
•  Genome Portal, IMG, Phytozome,

MycoCosm, KBase & APIs

JGI Sequencing Throughput

0

20000

40000

60000

80000

100000

120000

FY09 FY10 FY11 FY12 FY13 FY14

Plant Fungal Metagenome Microbial

Gb: billions of bases sequenced
30,000 human genome equivalents!

Software in use

•  Many diverse packages (several 100)
–  Applications are mostly 3rd party

•  University, Institutional, Commercial, Grad-ware
–  Few are explicitly parallel (and scale well)
–  Even fewer use GPU or accelerators (and feature-full)
–  Many steps can be treated as embarrassingly parallel
–  Most of the stable apps are in C/C++/Java
–  Small datasets on a laptop; large on a cluster or cloud

•  Bioinformatics == complex pipelines
a.k.a. workflows
–  Many steps (reads, genes, genomes)
–  Many formats (fastq, bam, gff)
–  Many split – merge stages
–  Many serial stages
–  Decision trees, feedback loops,

iterative analysis
–  Every pipeline has a different backbone

–  Perl / Python / GE job dependencies

3/8/15 6

Typical De Novo pipeline (workflow)

•  Laboratory sequencer instruments generate raw data from DNA (10TB)
–  Proprietary, realtime (ASIC or dedicated HW) “basecalling”
–  QA on instrument run metrics
–  Basecall management (10GB-1TB): archive / publish / migrate

•  LIMS + QA/QC
–  Scan for contaminates & proper complexity
–  Analyze accuracy, completeness, etc..
–  Reject and re-run if needed

•  Assembly (1GB – 2TB reads)
–  QA/QC of assembly, tune, repeat, if needed

•  Annotation (10MB – 20GB scaffolds) or re-sequencing analysis (20 TB)
–  Identify genes, features, regulation
–  Align genes to known-knowns (reference analogs), predict unknowns
–  Predict function, pathways, and interactions

•  Publish to web portals (10-100GB)
–  Community collaboration and analysis with further annotations

3/8/15 7

Even more detail: Meta-genome
assembly workflow
•  Formatting steps
•  Quality control

•  Multiple assemblies

•  Post processing

•  Reporting

3/6/15 8

Computing at the JGI (Grid Engine)

3/6/15 9

Approximately..
•  45% Protein Alignment
•  15% DNA Alignment
•  10% Assembly (High Mem)
•  30% Diverse Software

Assembly critical to
knowing the genome

Alignments critical to
understanding the
genome and relationships

Many tools for many questions

Applications: Alignment

•  Protein, DNA, RNA
•  BLAST, usearch, iprscan
•  Smith-Waterman, HMMER
•  Botwie, BWA, BBmap, blasr, vmatch

•  Algorithm
•  ~O(N * m * LogM)
•  Database / Target: M (with m redundancy)

•  Large (30GB+)
•  growing fast
•  Loaded into RAM
•  Indexed by k-mers, various strategies
•  Hits -> dynamic programming (S-W)

•  Rate limiting step (in fastest app)
•  Query / Subject : N

•  Very large (1TB)
•  growing exponentially
•  Embarrassingly parallel over N

3/6/15 10

Alignment Requirements & Challenges

•  Data intensive - I/O bottleneck
–  Getting the database to all nodes at scale (ex. 30GB * 200 nodes)
–  GPFS vs local copy vs NFS (mmap with kernel file system caching)

•  Peer to Peer / bittorrent also helps
–  Inputs and results (large but embarrassingly parallel)

•  Dynamic programming
–  Widely varying execution time

•  Size & complexity of database
•  Redundancy of database (# hits to examine deeply)
•  Load balancing needs improvement (sorting / re-ordering queries)

–  Little opportunity for compiler vectorizations
•  Large random access memory search space

–  Few cacheline hits, limited by memory latency / bandwidth
–  Threaded code almost always less efficient

•  Sometimes has strong NUMA penalty

3/6/15 11

Running Alignments Efficiently

•  Multi-thread vs multi-process
–  Measuring throughput per unit time

•  Blast, usearch, HMMER
•  Large startup cost to load database
•  Large additional overhead when multi-threaded

–  Amdahl’s law & poor load balancing

3/6/15 12

Smith-Waterman Overview

3/6/15 13

•  Align two sequences
–  Mismatches, insertions, deletions

affine gap penalty
•  Each alignment: O(N^2)

–  N (i.e. length) ranges 200 – 10000
•  Well studied, optimized

–  GPU, FPGA, SIMD, etc
•  Recursively fill in matrix cells

–  Depends on left, up and diagonal
•  Traceback best score’s path

for seq in queries:

 for ref in references: // (Q * R) brute force SW alignments
 for row in seq.length:
 for col in ref.length: // ~N^2 SW cells
 cell[row][col] = SW(isMatched, left, up, diagonal)

GCCCTAGCG
 GCGCAATG

SW Kernel to fill in a cell (jAlign)

protected void fillInCell(Cell currentCell, Cell cellAbove, Cell cellToLeft, Cell cellAboveLeft) {
 int rowSpaceScore = cellAbove.getScore() + space;
 int colSpaceScore = cellToLeft.getScore() + space;
 int matchOrMismatchScore = cellAboveLeft.getScore();
 if (sequence2.charAt(currentCell.getRow() - 1) == sequence1
 .charAt(currentCell.getCol() - 1)) {
 matchOrMismatchScore += match;
 } else {
 matchOrMismatchScore += mismatch;
 }
 if (rowSpaceScore >= colSpaceScore) {
 if (matchOrMismatchScore >= rowSpaceScore) {
 if (matchOrMismatchScore > 0) {
 currentCell.setScore(matchOrMismatchScore);
 currentCell.setPrevCell(cellAboveLeft);
 }
 } else {
 if (rowSpaceScore > 0) {
 currentCell.setScore(rowSpaceScore);
 currentCell.setPrevCell(cellAbove);
 }
 }
………

3/6/15 14

……
 } else {
 if (matchOrMismatchScore >= colSpaceScore) {
 if (matchOrMismatchScore > 0) {
 currentCell.setScore(matchOrMismatchScore);
 currentCell.setPrevCell(cellAboveLeft);
 }
 } else {
 if (colSpaceScore > 0) {
 currentCell.setScore(colSpaceScore);
 currentCell.setPrevCell(cellToLeft);
 }
 }
 }
 if (currentCell.getScore() > highScoreCell.getScore()) {
 highScoreCell = currentCell;
 }
}

SW kernel SIMD version (swaphi)

#ifdef __MIC__
 register __m512i vecQ0, vecQ1, vecQ2, vecQ3;
 register __m512i vecQ4, vecQ5, vecQ6, vecQ7;

 register __mmask16 vecM0, vecM1, vecM2, vecM3;

 register __mmask16 vecM4, vecM5, vecM6, vecM7;
 register __m512i vecHi, vecLo, vecS;

 /*get the subject sequence data*/

 vecQ0 = _mm512_extload_epi32(chunk, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);

 vecQ1 = _mm512_extload_epi32(chunk + 1, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);
 vecQ2 = _mm512_extload_epi32(chunk + 2, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);

 vecQ3 = _mm512_extload_epi32(chunk + 3, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);
#if SEQ_LENGTH_ALIGN == 8
 vecQ4 = _mm512_extload_epi32(chunk + 4, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);

 vecQ5 = _mm512_extload_epi32(chunk + 5, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);
 vecQ6 = _mm512_extload_epi32(chunk + 6, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);
 vecQ7 = _mm512_extload_epi32(chunk + 7, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);

#endif

 vecM0 = _mm512_cmpge_epi32_mask(vecQ0, vecI16);
 vecM1 = _mm512_cmpge_epi32_mask(vecQ1, vecI16);
 vecM2 = _mm512_cmpge_epi32_mask(vecQ2, vecI16);

 vecM3 = _mm512_cmpge_epi32_mask(vecQ3, vecI16);
#if SEQ_LENGTH_ALIGN == 8

 vecM4 = _mm512_cmpge_epi32_mask(vecQ4, vecI16);
 vecM5 = _mm512_cmpge_epi32_mask(vecQ5, vecI16);
 vecM6 = _mm512_cmpge_epi32_mask(vecQ6, vecI16);

 vecM7 = _mm512_cmpge_epi32_mask(vecQ7, vecI16);
#endif
3/6/15 15

Unroll and vectorized
across reference
candiates

Cont…

 /*adjust the indices*/
 vecQ0 = _mm512_mask_sub_epi32(vecQ0, vecM0, vecQ0, vecI16);
 vecQ1 = _mm512_mask_sub_epi32(vecQ1, vecM1, vecQ1, vecI16);
 vecQ2 = _mm512_mask_sub_epi32(vecQ2, vecM2, vecQ2, vecI16);

 vecQ3 = _mm512_mask_sub_epi32(vecQ3, vecM3, vecQ3, vecI16);
#if SEQ_LENGTH_ALIGN == 8

 vecQ4 = _mm512_mask_sub_epi32(vecQ4, vecM4, vecQ4, vecI16);
 vecQ5 = _mm512_mask_sub_epi32(vecQ5, vecM5, vecQ5, vecI16);
 vecQ6 = _mm512_mask_sub_epi32(vecQ6, vecM6, vecQ6, vecI16);

 vecQ7 = _mm512_mask_sub_epi32(vecQ7, vecM7, vecQ7, vecI16);
#endif

 /*get the substitution scores*/
 for(int32_t i = 0; i < SCORE_MATRIX_SIZE; ++i){

 /*get the substitution scores*/
 vecLo = _mm512_extload_epi32(matrix++, _MM_UPCONV_EPI32_SINT8, _MM_BROADCAST32_NONE, 0);
 vecHi = _mm512_extload_epi32(matrix++, _MM_UPCONV_EPI32_SINT8, _MM_BROADCAST32_NONE, 0);

 vecS = _mm512_permutevar_epi32(vecQ0, vecLo);

 vecS = _mm512_mask_permutevar_epi32(vecS, vecM0, vecQ0, vecHi);
 _mm512_store_epi32(profile++, vecS);

 vecS = _mm512_permutevar_epi32(vecQ1, vecLo);
 vecS = _mm512_mask_permutevar_epi32(vecS, vecM1, vecQ1, vecHi);

 _mm512_store_epi32(profile++, vecS);
..........

3/6/15 16

Calculate 1 cell
over 8 alignments
per operation

Need better vector abstractions

•  SIMD code is hero work
–  Relatively simple loop unrolling, but complex code changes
–  Bioinformatics can’t expect many programmers at that level

•  Performance portability
–  Different code (for a paper) necessary for each generation of processor

•  SW implementations for SSE2, SSE3, SSE4, GPU, Phi, FPGA
•  Autotuning would help too

–  Lots of #ifdefs presumably for hand-tuning
–  HW specific optimizations

•  Rigid, brittle code
–  Very hard to extend or add features (like double-affine SW)
–  Hard to re-use in upstream applications

3/6/15 17

De Novo Genome Assembly

3/6/15 18

1. Three copies of the same novel.

For all men tragically great are made so through a
certain morbidness… all mortal greatness is but
disease.

2. Some text from the novel. All pages will be randomly cut
into strips of characters. Random typos (errors) throughout
each novel.

For a

all men tragically g

ally great

great are made so

3. A few strips of characters from one page.

4. All of the strips of characters from the 3
novels.

5. Every strip must be assembled as shown here to create a
single copy of the novel.

For all men tragically great are made so

For a ally great

great are made so all men tragically g

1. Three copies of the same DNA.

2. Some part of the DNA sequence. It will be read into
strips. There are random errors throughout the sequence.

ACCGTAGCAAAACCGGGTAGTCATACTACTACGTACTCATCT

3. The sequence is read into smaller pieces (reads). Can not
read whole DNA sequence in one go.

ACCGTAGCAA

AAACCGGGTA TAGTCATACT

AAACCGGGTA

ACTACGTACT

4. All reads

5. Reconstruct original DNA sequence from the read set.

ACCGTAGCAAAACCGGGTAGTCATACTACTACGTACTCATCT

ACCGTAGCAA

AAACCGGGTA

GTAGTCATACT

CTACTACGTAC

CGTACTCATCT

Assembly: Constructing Genomes
from Shredded Sequences

3/6/15 19

reads

contigs

scaffolds

k-mers

1

2

3

Input: Reads that may
contain errors

Chop reads into k-mers, process
k-mers to exclude errors

Construct & traverse de Bruijn
graph of k-mers, generate contigs

Leverage read information to link
contigs and generate scaffolds.

Applications: Assembly

•  SMP tools (generally better, simpler to run and preferred)
–  Allpaths, SOAPdenovo, Velvet, spades, AMOS, IDBA, newbler, …
–  Require large memory machines
–  Limited by size & complexity; typically, few steps are threaded

•  HPC tools
–  ABySS (MPI) - Michael Smith’s Genome Sciences Centre

•  Fast, scalable
•  Serial scaffolding, okay quality contigs, somewhat buggy

–  Ray (MPI) - Canadian Institutes of Health Research
•  Good quality, very scalable
•  Could be much faster (poor file I/O & chatty communications)

–  HiP Meraculous (UPC; MPI) – JGI / UC Berkeley
•  Fast, scalable & high quality
•  No scaffolding, yet… (work in progress)

3/6/15 20

Assembly Challenges

•  Contig assembly
–  Requires large (distributed) hash table
–  Memory limited

•  Errors in read data dominate
•  Memory latency drives performance

•  Scaffold assembly is NP-hard problem
–  Reads can map to multiple places (repeats, variation, errors,

imperfections)
–  Variation in read coverage can mislead repeat detection / resolution
–  Heuristics need tuning for each experiment

3/6/15 21

DOE Mission & Grand Challenge
•  Deep metagenome sequencing, limited by assembly memory

•  SMP algorithms fail at ~100GB
•  Throwing data away to process at all!
•  Distributed memory assembly needed
•  Essential to understanding microbial dark-mater and their impacts

–  “Dormant” seed populations can “wake” with interesting capabilities
3/6/15 22

•  FPGA refactored code is better
•  Still fails at ~850GB

(HiP) Meraculous port to UPC

•  Build distributed hashtable of kmers & extensions

•  Building table scales fine
•  Initial performance was very slow (relative to SMP)

–  Memory latency dominates
–  Memory bandwidth very slow for small operations

3/6/15 23

P0

P1

Pn

…

ACCGATTCA CT
TTGCATTCT AT
ACCCGATAG AA
CTCGATTCA CG

 …

ACCGGCCC GT
ACGGGGCA AT
ACCAATTTG TT
GACCAATTC GA

Input file Read k-mers Distributed
hashtable Store k-mers

Meraculous UPC: Local Buffer Batching

•  Aggregating changes to a thread, send when local buffer is full

•  Aggregate upc_memput operations
•  Can throughput of small messages

be improved?
–  Is this a NIC bottlneck in

network ops / second
–  Local buffer will be very large when on

 exascale with 1M threads
• 

3/6/15 24

Pi

…

Local buffer designated for P0

Distributed
hash table

Local to P0

Local to P0

Local to P0

Local to P0

P0

Local buffer designated for P1

Local buffer designated for Pn

Buffer local to P0

1) Pi initiates a remote aggregate k-mer
transfer when the corresponding designated
local buffer gets full.

2) P0 later stores the k-mers
in its local buckets of the
distributed hash table

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 1 2 4 8 16 32 64 128

b
an

d
w

id
th

 (
M

B
/s

)

message size in k-mers (S)

Bandwidth

38x
faster

Meraculous UPC: DeBruijn Traversal

•  Parallel DeBruijn Graph Traversal

•  Poor locality as kmers can be anywhere on distributed hashtable
–  Can cache coherency be turned off to improve performance? Relaxed consistency
–  Can cores be over-subscribed to hide distributed memory latency?

•  Lock-free global atomic
–  Mark traversed contigs

•  Lightweight global lock
–  Resolve >=2 processes on same contig

•  80% parallel efficiency
–  Dominated by graph traversal
–  Contig lock contention at high scale

3/6/15 25

GAT ATC TCT CTG TGA

AAC

ACC

CCG

AAT

ATG

TGC

 2

 4

 8

 16

 32

 64

 128

 256

 512

 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

combined time
de Bruijn graph traversal

de Bruijn graph construction
ideal combined time

Meraculous UPC on KNC

•  This is on a single Knights Corner MIC board
•  Single thread / core vs multiple threads / core
•  73x with 3 threads/core (60 cores)

–  70% faster than 60 cores @43x
–  22% faster than 60x
–  Hardware threads really help

•  (To a point)

3/6/15 26

 0

 50

 100

 150

 200

 1 2 4 8 16 32 48 60 120 180 240
 0

 20

 40

 60

 80

S
ec

on
ds

sp
ee

du
p

vs
 1

 U
P

C
 th

re
ad

Number of UPC threads

Graph construction and traversal on a single MIC

contig generation time
Speedup

73x
67x

43x

Meraculous UPC: Parallel Alignment

•  End to End parallelized (including index building and I/O)
•  80% parallel efficiency
•  Software caching

–  exploiting coverage redundancy -- reuse target & reference
•  SIMD S-W alignments

3/6/15 27

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 480 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

merAligner-wheat
ideal-wheat
merAligner-human
ideal-human
BWAmem-human
Bowtie2-human

Applications: Resequencing and
Variant Analysis

3/6/15 28

•  Genome Wide Associative Studies (GWAS)
•  Sample 1000s of individuals, calculate significant genotypes for phenotypes
•  Analysis involves pulling in data from every sample (20TB+)

•  Data intensive!
•  Calculating base changes, insertions, deletions and rearrangements
•  Deriving phenotypic relationships between genotypic changes
•  1000 poplar trees, 2000 rice genomes

Recent huge schizophrenia GWAS study
•  160k individuals, ~25k genes each (with 52M known variants)

Requirement Conclusions
•  Small message optimizations (esp. UPC, MPI-3)

–  Fast global atomics
•  Full set of operations (both add + fetchAdd)
•  Full set of primitives (int8, int64, pointers)

–  Fast and scalable global / group locks
–  Higher bandwidth & latency hiding (many operations in flight)

•  SIMD
–  Performance portability – same code many platforms
–  High level programming support – needs to be easy and intuitive
–  Autotuning
–  Support for dynamic programming

•  Configurable SMP cache coherency
–  Let the programmer tune locality constraints by allocated region

3/6/15 29

Requirement Conclusions (cont)

•  High-Performance Computing system must also be Data-Intensive system
–  Workflows consume and rely on fast I/O
–  Assembly is both HPC and DI
–  Variable length files and formats – biology is irregular and messy
–  Alignment requires large static input (database) + partition-able query set

•  Fast & efficient read-only memory mapping broadcast
•  Mem Map Peer to Peer – can file clients also be servers of RO files?

•  Diverse software stack
–  Support for pipelines
–  Complex workflows
–  Virtualization – bring your own software stack – cloud compatible SW

•  Task based scheduling
–  High level (job task in workflow)
–  Low level (load-balanced work for a thread to perform)

 3/6/15 30

Thank you

•  David Gilbert
•  Evangelos Georganas
•  Aydin Buluc
•  Alex Copeland
•  Joel Martin
•  Frank Korzeniewski
•  Zhong Wang
•  Doug Jacobsen
•  Kjiersten Fagnan
•  Kathy Yelick
•  John Shalf
•  NERSC
•  DOE
•  Google	

	
 Joint	
 Genome	
 Ins,tute	
 is	
 supported	
 by	
 the	
 Office	
 of	
 Science	
 of	
 the	
 U.S.	

	
 Department	
 of	
 Energy	
 under	
 Contract	
 No.	
 DE-­‐AC02-­‐05CH11231	

3/6/15 31

