\7 JOINT GENOME INSTITUTE
JGI K

UNITED STATES DEPARTMENT OF ENERGY

Genomic Application
Requirements

DOE Workshop on Exascale Programming
Models and Environments

Rob Egan
Joint Genome Institute / LBNL
2015-03-09

DOE Joint Genome Institute JGI "\ 7

J

JOINT GENOME INSTITUTE r .

RO, U.S. DEPARTMENT OF Offce of

@ ENERGY science

Walnut Creek, CA

Opened in 1999

250 employees

Partners: LBNL, LLNL, LANL,
PNNL, ORNL, Hudson Alpha

Science Output->Publications R,
P JGI X

JOINT GENOME INSTITUTE .)

« 176 Total peer-reviewed publications
« 60 + High-Impact (>8 IF: e.g., Science, Nature, Cell,)
* More than : 31,500 citations of JGI publications in FY14

-(JGI publications from 2008-13)
MYCOLOGIA =

Key Publications in 2014 Bens® 3 |

Codon Reassignments in the Wild, Science
Eucalyptus Genome, Nature

Citrus Genome, Nature Biotechnology

Common Bean Genome, Nature Genetics
White/Brown Rot Paradigm for Wood Decay, PNAS

IDing Livestock Gut Microbes Contributing to
Greenhouse Gas Emissions, Genome Research

Dead Sea Salt-Tolerant Fungus, Nature Comm
Prochlorococcus Single-Cell Genomics, Science
Largest Soil DNA Sequence Analysis Effort, PNAS

Duckweed Genome Biofuel Relevance, Nature
Communications

Monkey Flower Gene-shuffling Hotspots, PNAS

JGI Facility Overview JGIX

JOINT GENOME INSTITUTE

State of the Art Sequencing Capabllltles
* |llumina HiSeq (9)
* lllumina MiSeq (4)
* PacBio (2)

* Oxford Nanopore

State of the Art Computing Capabilities =
Infiniband Cluster 7500 cores (50-60M hours) | in e
 HighMem: 2TB, 3 x 1TB, 12 x 512G, 24 x 256GB
« >2PB on GPFS + >4PB Tape (HPSS)

« High 1/O utilization
* 2M hours NERSC allocation
 Genome Portal, IMG, Phytozome,
MycoCosm, KBase & APls

JGIl Sequencing Throughput JGI \7 57

JOINT GENOME INSTITUTE

30,000 human genome equwalents'

Gb: billions of bases sequenced

120000 N

100000

80000

60000

40000

20000 I
0 —

FYO09 FY10 FY11 FY12 FY13 FY14

®Plant ®Fungal " Metagenome ™ Microbial

Software in use

Many diverse packages (several 100)

Applications are mostly 3™ party

 University, Institutional, Commercial, Grad-ware
Few are explicitly parallel (and scale well)
Even fewer use GPU or accelerators (and feature-full)
Many steps can be treated as embarrassingly parallel
Most of the stable apps are in C/C++/Java
Small datasets on a laptop; large on a cluster or cloud

* Bioinformatics == complex pipelines

a.k.a. workflows

3/8/15

Many steps (reads, genes, genomes)
Many formats (fastq, bam, gff)

Many split — merge stages

Many serial stages

Decision trees, feedback loops
iterative analysis

Every pipeline has a different backbone
— Perl / Python / GE job dependencies

Typical De Novo pipeline (workflow) JGIX (

JOINT GENOME INSTITUTE &

Laboratory sequencer instruments generate raw data from DNA (10TB)
— Proprietary, realtime (ASIC or dedicated HW) “basecalling”
— QA on instrument run metrics
— Basecall management (10GB-1TB): archive / publish / migrate
LIMS + QA/QC
— Scan for contaminates & proper complexity
— Analyze accuracy, completeness, etc..
— Reject and re-run if needed
Assembly (1GB - 2TB reads)
— QA/QC of assembly, tune, repeat, if needed
Annotation (10MB - 20GB scaffolds) or re-sequencing analysis (20 TB)
— Identify genes, features, regulation
— Align genes to known-knowns (reference analogs), predict unknowns
— Predict function, pathways, and interactions
Publish to web portals (10-100GB)
— Community collaboration and analysis with further annotations

3/8/15 7

Even more detail: Meta-genome

\7
assembly workflow JGI A |
* Formatting steps
* Quality control Trim_illumina_reads.pl [> qua“t\fl__éeDPOYT-pl

¢

pastTrimlllumina pl

* Multiple assemblies

SOAPdenovo SOAPdenovo SOAPdenovo SOAPdenaovo SOAPdenovo SOAPdenovo
105 hash 101 hash 97 hash 93 hash 89 hash 85 hash
AL -

* Post processing dereplicate_cantigs.pl
SequentialRunCombineAssemblies pl
, | >
Reportlng . _ quality_report.pl
dereplicate_contigs.pl TBD

3/6/15 8

Computing at the JGI (Grid Engine) M[el}

Approximately..

* 45% Protein Alignment
« 15% DNA Alignment scearch
* 10% Assembly (High Mem) \a=757 05
* 30% Diverse Software

blast
N=70618994
Val=1.94e+10s

Assembly critical to
hadoop

knowing the genome N=4104065
Val=7.20e+09s

Alignments critical to
understanding the
genome and relationships

hmmer XN S
N=148385288
Val=4.36e+09s

Many tools for many questions

Ray
N=204672
Val=2.88e+09s

bowtie €%§98n5

meraculous

tch . d P
3/6/15 Genoég)&smﬂgjﬁ(wmap stamm&ﬂ

\7
A

JOINT GENOME INSTITUTE i

J0.1001_i86linux64

Applications: Alignment

190 200 210 220 230 240 250
Thu_Mar_26_10:02: 12_+0100_2009/1-289 :

011149045812 |E=1e-123/1-289

011126334106 |E=1e-114/1-289

. 9i150749158|E=1e-103/1-289

Y P t DNA RNA 011149412903 | E=Be-99/1-289

ro eln,) 011147898568 | E=2e-97/1-289

011219425466 | E=9e-97/1-289

011115649777 |E=3e-92/1-289

° BLAST, usea rCh y iprscan 011148670454 |E=4e-91/1-289

01171480074 |E=1e-90/1-289
g1 1157105451 |E=3e-89/1-289

 Smith-Waterman, HMMER B s e o

gi 1195387098 |E=4e-87/1-289

- Botwie, BWA, BBmap, blasr, vmatch oz 501E2x 001 29
g1 1195350393 |E=4e-86/1-289

* Algorithm
° ~O(N * m * LOgM) i:j:isze:xz-am:zss
« Database / Target: M (with m redundancy) -
« Large (30GB+)

» growing fast

3333
€ C)) € C) £

=R

= > L
C) C) C

E O S

3
E
E

=
g

+ Loaded into RAM e —————
* Indexed by k-mers, various strategies) = I
» Hits -> dynamic programming (S-W) =
» Rate limiting step (in fastest app) %
* Query/ Subject: N =
« Very large (1TB) =
« growing exponentially %
« Embarrassingly parallel over N =
3/6/15 10

Alignment Requirements & Challenges JGI;/;'?

JOINT GENOME INSTITUTE &

° Data intensive - I/O bottleneck
— Getting the database to all nodes at scale (ex. 30GB * 200 nodes)
— GPFS vs local copy vs NFS (mmap with kernel file system caching)
» Peer to Peer / bittorrent also helps
— Inputs and results (large but embarrassingly parallel)
°* Dynamic programming
— Widely varying execution time
« Size & complexity of database
« Redundancy of database (# hits to examine deeply)
» Load balancing needs improvement (sorting / re-ordering queries)
— Little opportunity for compiler vectorizations
°* Large random access memory search space
— Few cacheline hits, limited by memory latency / bandwidth
— Threaded code almost always less efficient
« Sometimes has strong NUMA penalty

3/6/15 1

B-rate

Running Alignments Efficiently

1800000
1600000

1400000}
1200000}
1000000}

800000}

600000

400000}
200000}

Multi-thread vs multi-process

— Measuring throughput per unit time

Blast, usearch, HMMER

Large startup cost to load database

Large additional overhead when multi-threaded
Amdabhl’'s law & poor load balancing

sl

l

LI

24 tasks x 1 thread
12 tasks x 2 threads
6 tasks x 4 thewads
4 tasks x 6 thveads
3 tasks x B threads
1 tasks x 24 threads

200 400

Number of sequences (log)

B-rate

3000

2500

2000

1500

1000

500

(

JGIX

JOINT GENOME INSTITUTE r .)

& 4
v v v

=4 24 tasks x 1 thread
¥ 12 tasks x 2 threads
* 9 6 lasks x 4 thrwads
B8 4 tasiks x 6 threads
® 9 Jtasks x § threaos
B9] tasks x 24 threads

oot
200 400 800 1600 3200 6400 12800
Number of sequences (log)

Smith-Waterman Overview JGI Y ‘
Figure 8. Filled-in Smith-Waterman table with traceback
* Align two sequences c|lclcl|lc|T|a|lc|lc|o
— Mismatches, insertions, deletions oo oo fo]o 4’\\0 0| o
affine gap penalty o |o {1 oo o [o] oMo |-
* Each alignment: O(N*2) c JoJofz1]1]0]0o]oRaNo
— N (i.e. length) ranges 200 — 10000 | [o | 1] oy[1 o |0 [0 [1] oKy
* Well studied, optimized C o o fz2 |1 f2]0)0 fo0]2/|H1
— GPU, FPGA, SIMD, etc A o Jo oot oo |
* Recursively fill in matrix cells SR IR B T A S R B e e
— Depends on left, upand diagonal |~ [°~ ° [°[°] ° 1P O T]%°
* Traceback best score’s path S O MR R I I A N

GCCCTAGCG
for seq in queries: GCGCAATG

for ref in references: // (Q * R) brute force SW alignments
for row in seq.length:
for col in ref.length: // ~N*2 SW cells
cell[row][col] = SW(isMatched, left, up, diagonal)

3/6/15 13

(

SW Kernel to fill in a cell (jAlign) JGIX

JOINT GENOME INSTITUTE r .)

protected void fillinCell(Cell currentCell, Cell cellAbove, Cell cellToLeft, Cell cellAboveLeft) {
int rowSpaceScore = cellAbove.getScore() + space;
int colSpaceScore = cellToLeft.getScore() + space;
int matchOrMismatchScore = cellAboveLeft.getScore();
if (sequence2.charAt(currentCell.getRow() - 1) == sequence1
.charAt(currentCell.getCol() - 1)) {
matchOrMismatchScore += match;,
} else { }else {

matchOrMismatchScore += mismatch;

}

if (rowSpaceScore >= colSpaceScore) {
if (matchOrMismatchScore >= rowSpaceScore) {
if (matchOrMismatchScore > 0) {
currentCell.setScore(matchOrMismatchScore);
currentCell.setPrevCeli(cellAbovel eft);
}
}else {
if (rowSpaceScore > 0) {
currentCell.setScore(rowSpaceScore);
currentCell.setPrevCell(cellAbove);

if (matchOrMismatchScore >= colSpaceScore) {
if (matchOrMismatchScore > 0) {
currentCell.setScore(matchOrMismatchScore)
currentCell.setPrevCeli(cellAbovel eft);
}
}else {
if (colSpaceScore > 0) {
currentCell.setScore(colSpaceScore);
currentCell.setPrevCeli(cellToLeft);
}
}

}
if (currentCell.getScore() > highScoreCell.getScore(

highScoreCell = currentCell;

}

3/6/15 14

SW kernel SIMD version (swaphi) _[G[’

JOINT GENOME INSTITUTE)

#ifdef _ MIC _

reg:?.ster _m512:?. vecQ0, vecQl, vecQ2, vecQ3,: Unroll and VeCtorized

register _ m512i vecQ4, vecQ5, vecQ6, vecQ7;

reg::.ster __mmasklé vecMO, vecMl, vecM2, vecM3; aCrOSS reference

register _ mmaskl6é vecM4, vecM5, vecM6, vecM7;

register _ m512i vecHi, veclo, vecS; Candiates

/*get the subject sequence data*/

vecQ0 = mm512_extload epi32(chunk, _MM UPCONV_EPI32 UINT8, _MM BROADCAST32_NONE, 0);
vecQl = mm512 extload epi32(chunk + 1, MM UPCONV_EPI32 UINT8, MM BROADCAST32 NONE, O0);
vecQ2 = _mm512_extload epi32(chunk + 2, _MM UPCONV_EPI32_UINT8, _MM BROADCAST32_NONE, 0);

vecQ3 = mm512_extload epi32(chunk + 3, _MM UPCONV_EPI32_ UINT8, _MM BROADCAST32_NONE, 0);
#if SEQ LENGTH ALIGN ==

vecQ4 = mm512 extload epi32(chunk + 4, MM UPCONV_EPI32 UINT8, MM BROADCAST32 NONE, O0);
vecQ5 = mm512 extload epi32(chunk + 5, _MM UPCONV_EPI32 UINT8, _MM BROADCAST32 NONE, O0);
vecQ6 = mm512_extload epi32(chunk + 6, _MM UPCONV_EPI32_ UINT8, _MM BROADCAST32 NONE, 0);
vecQ7 = mm512 extload epi32(chunk + 7, _MM UPCONV_EPI32 UINT8, MM BROADCAST32 NONE, O0);
#iendif
vecM0 = mm512 cmpge epi32 mask(vecQO0, vecIl®);
vecMl = mm512_ cmpge_epi32 mask (vecQl, vecIl6);
vecM2 = mm512_ cmpge epi32 mask (vecQ2, vecIl6);
vecM3 = mm512_ cmpge_epi32_ mask (vecQ3, vecIl6);
#if SEQ LENGTH ALIGN ==
vecM4 = mm512_ cmpge_epi32_mask (vecQ4, vecIl6);
vecM5 = mm512_ cmpge_epi32_ mask (vecQ5, vecIl6);
vecM6 = mm512_ cmpge epi32 mask (vecQ6, vecIl6);
vecM7 = mm512_ cmpge_epi32_mask (vecQ7, vecIl6);
#endif
3/6/15 15

Cont...

/*adjust the indices*/

vecQ0 = mm512 mask _sub _epi32(vecQ0, vecM0, vecQO, vecIl®6); (:;Eil(:leEitE; 1 (:EB'I

vecQl = mm512 mask sub _epi32(vecQl, vecMl, vecQl, vecIl6);

ecQ2 mm512 mask sub epi32(vecQ2, vecM2, Q2, I16); .
veco? - b2 mask suh epias(vecod, veewr veet, veer' @’ over 8 alignments

vecQ3 = mm512 mask sub_epi32(vecQ3, vecM3, vecQ3, vecIlé);

#if SEQ LENGTH ALIGN == . p e r O p e rati O n

vecQ4 _mm512 mask sub _epi32(vecQ4, vecM4, vecQ4, vecIl6);

vecQ5 = mm512 mask sub _epi32(vecQ5, vecM5, vecQ5, vecIl6);
vecQ6 = mm512 mask sub epi32(vecQ6, vecM6, vecQ6, vecIl6);
vecQ7 = mm512 mask sub _epi32(vecQ7, vecM7, vecQ7, vecIlé);

#endif

/*get the substitution scores*/
for(int32_t i = 0; i < SCORE_MATRIX SIZE; ++i) {
/*get the substitution scores*/
vecLo = mm512 extload epi32(matrix++, _MM UPCONV_EPI32 SINT8, _MM BROADCAST32 NONE, O0);
vecHi = mm512 extload epi32(matrix++, _MM UPCONV_EPI32 SINT8, _MM BROADCAST32 NONE, O0);

vecS = mm512 permutevar_ epi32(vecQO0, vecLo);
vecS = mm512 mask permutevar epi32(vecS, vecMO, vecQO, vecHi);
_mm512 store_epi32(profile++, vecS);
vecS = mm512 permutevar_ epi32(vecQl, vecLo);
vecS = mm512 mask permutevar epi32(vecS, vecMl, vecQl, vecHi);
_mm512 store_epi32 (profile++, vecS);
3/6/15 16

Need better vector abstractions JGI (5/;” (

JOINT GENOME INSTITUTE &

SIMD code is hero work
— Relatively simple loop unrolling, but complex code changes
— Bioinformatics can’t expect many programmers at that level
°* Performance portability
— Different code (for a paper) necessary for each generation of processor
« SW implementations for SSE2, SSE3, SSE4, GPU, Phi, FPGA
Autotuning would help too
— Lots of #ifdefs presumably for hand-tuning
— HW specific optimizations
Rigid, brittle code
— Very hard to extend or add features (like double-affine SW)
— Hard to re-use in upstream applications

3/6/15 17

De Novo Genome Assembly JGI \/f

JOINT GENOME INSTITUTE ‘)

——————————

Moby-Dick

Herman Melville

,‘ 1. Three copies of the same DNA.
% Py spss. 2up Pt 2P st
2. Some text from the novel. All pages will be randomly cut

into strips of characters. Random typos (errors) throughout 6 2. Some part of the DNA sequence. It will be read into

1. Three copies of the same novel. =

each novel. strips. There are random errors throughout the sequence.

For all men tragically great are made so through a

certain morbidness.. all mortal greatness is but ACCGTAGCAAAACCGGGTAGTCATACTACTACGTACTCATCT
disease.
3. A few strips of characters from one page. 6 3. The sequence is read into smaller pieces (reads). Can not
read whole DNA sequence in one go.
For a ally great
ACCGTAGCAA AAACCGGGTA TAGTCATACT
great are made so all men tragically g
AAACCGGGTA ACTACGTACT
4. All of the strips of characters from the 3 6 4. All reads
I S S S
novels. I e B B S

5. Every strip must be assembled as shown here to create a 6 5. Reconstruct original DNA sequence from the read set.
single copy of the novel.

ACCGTAGCAAAACCGGGTAGTCATACTACTACGTACTCATCT

For all men tragically great are made so

ACCGTAGCAA GTAGTCATACT

For a great are made so

AAACCGGGTA CTACTACGTAC

all men tragically g

CGTACTCATCT

3/6/15

ally great

from Shredded Sequences JGI s

JOINT GENOME INSTITUTE

Assembly: Constructing Genomes = ‘
X
£

T s Input: Reads that may
reads B B §F 35 N N N §F Contain errors

)

k-mers ——m==__~ e el Chop reads into k-mers, process

- e m m o aE m e e = - k-mers to exclude errors

&

contigs "eemms mess mss———— w=sm Construct & traverse de Bruijn

@

graph of k-mers, generate contigs

SCaffoldS " a— - Leverage read information to link

contigs and generate scaffolds.

3/6/15 19

Applications: Assembl \7
Pi J JGIX
°* SMP tools (generally better, simpler to run and preferred)
— Allpaths, SOAPdenovo, Velvet, spades, AMOS, IDBA, newbler, ...
— Require large memory machines
— Limited by size & complexity; typically, few steps are threaded
°* HPC tools
— ABySS (MPI) - Michael Smith’'s Genome Sciences Centre
* Fast, scalable
 Serial scaffolding, okay quality contigs, somewhat buggy
— Ray (MPI) - Canadian Institutes of Health Research
« Good quality, very scalable
« Could be much faster (poor file 1/0 & chatty communications)
— HiP Meraculous (UPC; MPI) — JGI / UC Berkeley
» Fast, scalable & high quality
* No scaffolding, yet... (work in progress)

3/6/15 20

Assembly Challenges _[Gl X

JOINT GENOME INSTITUTE

* Contig assembly
— Requires large (distributed) hash table
— Memory limited
« Errors in read data dominate

* Memory latency drives performance
* Scaffold assembly is NP-hard problem

— Reads can map to multiple places (repeats, variation, errors,
imperfections)

— Variation in read coverage can mislead repeat detection / resolution
— Heuristics need tuning for each experiment

3/6/15 21

DOE Mission & Grand Challenge

* Deep metagenome sequencing, limited by assembly memory

All metagenomes Great Prairie soils
90 o ¢ ¢ Soil 90
80 pa B Marine 80
§e) . o
= 70 - V'V YN / Groundwater = 70
£ 60 = . £ 60
D A A © Bioreactor D
% 50 i & 50
g4 . 8 40
8 30 S 30 R . .
= 20 = S =20 *
10 ¢ oo 0
0 1 senedts Bt 38 s 4 , 0 | | |

0 10 20 30 0 200 400 600
Gbp sequenced Gbp sequenced
* SMP algorithms fail at ~100GB * FPGA refactored code is better

* Throwing data away to process at alll * Still fails at ~850GB

* Distributed memory assembly needed

* Essential to understanding microbial dark-mater and their impacts
— “Dormant” seed populations can “wake” with interesting capabilities

3/6/15 22

(

(HiIP) Meraculous port to UPC JGI ¥ ‘
JOINT GENOME INSTITUTE ’ .\)
* Build distributed hashtable of kmers & extensions
Input file Read k-mers Store k-mers E;S:rr]i,;%tlzd

° Building table scales fine
* Initial performance was very slow (relative to SMP)

— Memory latency dominates

— Memory bandwidth very slow for small operations
3/6/15 23

Meraculous UPC: Local Buffer Batching JGI’\'

JOINT GENOME INSTITUTE ’ .\) ‘

° Aggregating changes to a thread, send when local buffer is full
Distributed
Local buffer designated for P, Buffer local to P, - hash table
—> Local to P,
1) P, initiates a remote aggregate k-mer
transfer when the corresponding designated
local buffer gets full.
Local to P,
Local buffer designated for P,
2) P, later stores the k-mers Local to P,
in its local buckets of the
distributed hash table
Local buffer designated for P, Local to P, 2 Bandwidth ~rder T T z A
1
°* Aggregate upc_memput operations Y ”
* Can throughput of small s oo
an throughput of small messages E o y Fete
be improved? E ~
. . § 0125
— Is this a NIC bottlneck in 3 -
network ops / second 00625 [W
— Local buffer will be very large when on 0.03125 e
. 1 2 4 8 16 32 64 128
exascale with 1M threads

3/6/15 message size in k-mers (S) 24

3/6/15

Parallel DeBruijn Graph Traversal

. f\
UUU

ACC

ATG

Poor locality as kmers can be anywhere on distributed hashtable
— Can cache coherency be turned off to improve performance? Relaxed consistency
— Can cores be over-subscribed to hide distributed memory latency?

Lock-free global atomic
— Mark traversed contigs

Lightweight global lock

— Resolve >=2 processes on same contig

80% parallel efficiency
— Dominated by graph traversal

Contig lock contention at high scale

Seconds

512

256 ™

128

64

32

16

0
.
::::::
n,
2

de Bruijn graph construction ===

combined time ===
de Bruijn graph traversal =s=d=x

ideal combined time o

A
L,....
£/

Meraculous UPC on KNC JGI Y

* This is on a single Knights Corner MIC board
* Single thread / core vs multiple threads / core
* 73x with 3 threads/core (60 cores)
70% faster than 60 cores @43x Graph construction and traversal on a single MIC

— 22% faster than 60x L contig genération time ssssess:
200 Speedup == - 80
— Hardware threads reallyhelp ¢+ | N |
* (To a point o 73X
(P) 50F ,,,,,;;‘,.e rrrrrrr BFX 1 60
N “"“
© o
c o
(o} "‘
g 1wof g A3 1 40
U) E .:
.
ok S 1 20
3:,!
A,
0 ,. Ry o Sl — R aessssnnnnnnnnnnnns 4 0
2816 32 4860 120 180 240
Number of UPC threads
3/6/15

JOINT GENOME INSTITUTE

speedup vs 1 UPC thread

26

(\.
\

,.)

W

° End to End parallelized (including index building and 1/O)
* 80% parallel efficiency
* Software caching
— exploiting coverage redundancy -- reuse target & reference

* SIMD S-W alignments

16384 — | | | | |
8192

£ n 4096

- _ oo g

!—Y—YLYY-'—Y“ EY-Y—Y- 512 " merAligner-wheat

—— ideal-wheat
o56 | === merAligner-human
— ideal-human

---@--- BWAmem-human
128 + ----@--- Bowtie2-human N i

3/6/15 480 960 1920 3840 7680 ,715360

- NumberofCores

Applications: Resequencing and e
Variant Analysis JGI X \

« Genome Wide Associative Studies (GWAS)
« Sample 1000s of individuals, calculate significant genotypes for phenotypes
* Analysis involves pulling in data from every sample (20TB+)

« Data intensive!

« Calculating base changes, insertions, deletions and rearrangements

« Deriving phenotypic relationships between genotypic changes

* 1000 poplar trees, 2000 rice genomes

Recent huge schizophrenia GWAS study
« 160k individuals, ~25k genes each (with 52M known variants)

18

3/6/15

Requirement Conclusions \7
* Small message optimizations (esp. UPC, MPI-3)
— Fast global atomics
* Full set of operations (both add + fetchAdd)
» Full set of primitives (int8, int64, pointers)
— Fast and scalable global / group locks

— Higher bandwidth & latency hiding (many operations in flight)

e SIMD
— Performance portability — same code many platforms
— High level programming support — needs to be easy and intuitive
— Autotuning
— Support for dynamic programming

* Configurable SMP cache coherency
— Let the programmer tune locality constraints by allocated region

3/6/15 29

Requirement Conclusions (cont \7
] SR JGIX
°* High-Performance Computing system must also be Data-Intensive system
— Workflows consume and rely on fast I/O
— Assembly is both HPC and DI
— Variable length files and formats — biology is irregular and messy
— Alignment requires large static input (database) + partition-able query set
» Fast & efficient read-only memory mapping broadcast
« Mem Map Peer to Peer — can file clients also be servers of RO files?

° Diverse software stack
— Support for pipelines
— Complex workflows
— Virtualization — bring your own software stack — cloud compatible SW

* Task based scheduling
— High level (job task in workflow)
— Low level (load-balanced work for a thread to perform)

3/6/15 30

Thank you JGIX ‘

° David Gilbert

°* Evangelos Georganas
° Aydin Buluc

* Alex Copeland

* Joel Martin

* Frank Korzeniewski

* Zhong Wang

°* Doug Jacobsen

* Kjiersten Fagnan
* Kathy Yelick

* John Shalf
° NERSC

° DOE

* Google

Joint Genome Institute is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231

3/6/15 31

