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Vision for Hierarchical Parallelism 
 “MPI + Kokkos” Programming Model, separate concerns 
 Intra-node parallelism concerns: heterogeneity & diversity 
 Processors (CPU, GPU, PIM, ...) have diverse performance requirements 
 Memory systems have diverse capabilities and performance characteristics 
 Vendors have diverse programming models for optimal utilization of their hardware 

 Standardized performance portable programming model? 
 Vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17 
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ... 
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ... 

 Programming model must address heterogeneity & diversity 
 SNL Computing Research Center’s Kokkos (C++ library) solution 
 Engagement with ISO C++ Standard committee to influence C++17 

 Emphasis: Portability, Performance, and Productivity 
 Defined and implement necessary abstractions as intuitively as possible 
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Application and Domain Specific Library Layer 
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Kokkos: A Layered Collection of C++ Libraries 
 Applications and Domain Libraries written in Standard C++ 
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 
 Required C++1998 standard (supported everywhere except IBM’s old xlC) 
 Moving to C++2011 for lambda syntax ← productivity 
 Vendors will soon have sufficient C++2011 language compliance 

 
 
 
 
 
 

 Kokkos implemented with C++ template meta-programming 
 In spirit of TBB, Thrust & CUSP, C++AMP, ... 

Back-ends: Cuda, OpenMP, pthreads, Qthreads, hwloc, ... 

Sparse Linear Algebra (in Trilinos) 
Kokkos Containers 
Kokkos Core 
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Ongoing Testing and Evaluation 
 Mini-applications, applications, and 

domain libraries using abstractions, 
evaluating productivity 
 Routinely testing functionality, 

portability, and performance on the 
Sandia NNSA Architecture Testbeds 
 Diverse set of compilers & versions 

 Using best performing native back-
ends to maintain nearly-native 
implementation performance 
 Parallel dispatch 
 Memory management 
 Atomic operations 

 TBD back-end : HSA for AMD 

✔ Intel Xeon Phi 

✔ Intel Xeon 

✔ NVIDIA GPUs 

✔ IBM POWER7+ and POWER8 

✔ ARM AArch64 

? AMD APU-GPU 

✔ AMD APU-CPU 

ACES Trinity and NERSC Cori 

LLNL Sierra and ORNL Summit 

Alternative Architectures 
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Some Projects leveraging Kokkos for MPI+X 
 Trilinos / Tpetra : foundational data structures and kernels for sparse linear 

algebra; Mark Hoemmen, Christian Trott 
 Trilinos / Stokhos : accelerating embedded UQ ; Eric Phipps 
 LAMMPS : molecular dynamics; Christian Trott 
 Albany : finite elements applied to ice sheets, atmosphere, mechanics, 

quantum devices; Andy Salinger, Irina Demeshko 
 ASCR Multiphysics MHD; Roger Pawlowski and Eric Cyr 
 FASTMath SciDAC / Graph Algorithms : Siva Rajamanickam 
 Zoltan / Graph Coloring : fast threaded graph coloring to identify independent 

sets of work for task parallelism; Erik Boman, Siva Rajamanickam 
 EMPRESS and miniPIC : particle-in-cell ; Matt Bettencourt 
 miniAero : CFD finite element mini-application ; Ken Franco 
 miniContact : contact detection for solid mechanics ; Glen Hansen 
 SHIFT @ ORNL; Steve Hamilton 
 Kokkos SNL/LDRD : directed acyclic graph of internally data parallel tasks 
 Uintah : A Unified Heterogeneous Task Scheduling and Runtime System, 

switching to Kokkos for local data parallelism  
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Challenges: Performance, Portability, Productivity 
Best (good) performance requires computations to 
implement architecture-specific memory access patterns 
 CPUs (and Xeon Phi) 
 Core-data affinity: consistent NUMA access (first touch) 
 Array alignment for cache-lines and vector units 
 Hyperthreads’ cooperative use of L1 cache 

 GPUs 
 Thread-data affinity: coalesced access with cache-line alignment 
 Temporal locality and special hardware (texture cache) 

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma 
 Has led to architecture specific re-writes 

This has been the wrong concern / approach 
Right: What abstractions for Performance, Portability, Productivity? 

 



6 

Kokkos’ Approach 
Integrated mapping of thread parallel computations and 

multidimensional array data onto manycore spaces 
1. Map user’s parallel computations to threads 
 User selects parallel pattern: parallel-for, parallel-reduce, parallel-task, ... 
 User implements parallel loop/task body as C++ function or lambda 
 Kokkos calls user’s code from architecture’s “hardware” threads 

2. Provide multidimensional array with a twist 
 Layout mapping: multi-index (i,j,k,...) ↔ memory location 
 Kokkos chooses layout for architecture-specific memory access pattern 
 Layout changes are invisible to user code 
IF user code honors Kokkos’ simple array API: a(i,j,k,...) 

 Polymorphic multidimensional array layout 

3. Enable portable access to special hardware capabilities 
 Atomic operations for thread safety 
 GPU texture cache to speed up read-only random access patterns 
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Spaces, Policies, and Patterns 
 Execution Space : where functions execute 
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ... 

 Memory Space : where data resides in the system hierarchy 
AND what execution space can access that data 
 Differentiated by access performance; e.g., latency & bandwidth 

 Execution Policy : how (and where) a user function is executed 
 E.g., data parallel range : concurrently call function(i) for i = [0..N) 
 User’s function is a C++ functor or C++11 lambda 

 Pattern: parallel_for, parallel_reduce, parallel_scan, task, ... 

 Compose: pattern + execution policy + user function; e.g., 
parallel_pattern( Policy<Space>, Function); 
 Execute Function in Space according to pattern and Policy 

 Extensible spaces, policies, and patterns 
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Parallel Execution API (simple with C++11) 
parallel_pattern( Policy<Space> , UserFunction ) 

 User Function can be simple with C++11 Lambda 
parallel_for( N , KOKKOS_LAMBDA( int i ) 
                        { y(i) = alpha * x(i) + y(i); } 
                      );  
parallel_reduce( N , KOKKOS_LAMBDA( int i , double & value ) 
                                { value += x(i) * y(i); } 
                              , result );   

 Kokkos manages scheduling and inter-thread communication 
 Execution Policy : flexibility & extensibility 
 RangePolicy : call function thread parallel with i = [0..N) 
 TeamPolicy : two-level parallelism with team collectives and shared memory 
 Experimental three-level policy with explicit level for vectorization 

 TaskPolicy : experimental using SNL’s Qthreads runtime 
? IndexSetPolicy for RAJA loops ? 
 Functor-class can have multiple parallel user functions 
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Team Policy : express maximum parallelism 
 Two-level parallel sparse matrix-vector multiply example: 
parallel_for( TeamPolicy<Space>(nTeam,nThreadPerTeam) , 
  KOKKOS_LAMBDA( const TeamPolicy<Space>::member_type & member ){ 
    double result = 0 ; 
    const int row = member.league_rank(); 
    parallel_reduce( TeamThreadLoop(member,icol(row),icol(row+1)), 
      [&]( int j , double & val ) { val += A(j) * X(jcol(j)); },  
      result ); 
    if ( member.team_rank() == 0 ) Y(row) = result ; 
  } 
);  

 Two level Team Policy : ( #Teams * #Threads/Team ) 
 Threads within an executing team : 
 Must cooperatively utilize memory and execution resources 
 Guaranteed concurrent and have team-collective operations 
 May have team-shared scratch memory 

 Team ~ GPU thread block  
 Team ~ Xeon Phi shared L1 cache hyperthreads 
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Multidimensional Array View API (simple) 
 Classical, intuitive abstraction in scientific & engineering codes 
 View< double**[3][8] , Space > a(“a”,N,M); 
 Allocate array data in Memory Space with dimensions [N][M][3][8] 
 Each * indicates a runtime supplied dimension 
 Proposing C++ standard improvement to enable  View<double[ ][ ][3][8],Space> 

 a(i,j,k,l) : user accesses array data through classical, intuitive API 

 New abstraction: polymorphic array layout for architecture-
specific memory access patterns 
 Kokkos transparently chooses array layout appropriate for “Space” 
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory 
 Optional array bounds checking of indices in debug compile 

 deep_copy( destination_view , source_view ); 
 Copy array data of ‘source_view’ to array data of ‘destination_view’ 
 Kokkos policy: never hide an expensive deep copy operation 
Space in the memory hierarchy: coherency domains, NVRAM, remote, ... 
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Array View API (advanced) 
 View<ArrayType,Layout,Space,Attributes> 
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions 
 Layout: user can override Kokkos’ choice for layout 
 Attributes: user’s access intentions 

 Why manually specify Layout ? 
 Force compatibility with legacy code while incrementally porting 
 Optimize performance with “plugged in” layout 

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N); 
 Tiling layout hidden from user code  m(i,j) 

 Access intent attributes 
 Easily and portably provide access to specialized hardware / runtime 
 Indicate const and random access to utilize GPU texture cache 

 View< const double **, Cuda, RandomAccess> b = a ; 

 Subarray views of array views 
 Y = subview( X , ...range_and_index_argument_list... ); 
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Atomic operations 
atomic_exchange, atomic_compare_exchange_strong, 
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and 

 Thread-scalability of non-trivial algorithms and data structures 
 Essential for lock-free implementations 
 Concurrent summations to shared variables 
 E.g., finite element computations summing to shared nodes 

  Updating shared dynamic data structure 
 E.g., append to a shared array or insert into a shared map 

 Portably map to compiler/hardware specific capabilities 
 GNU and CUDA extensions when available 
 Current: any 32bit or 64bit type, may use CAS-loop implementation 
 Future: any data type via “sharded lock” pattern 

 ISO/C++ 2011 and 2014 standards not adequate for HPC 
 Proposed improvement of ISO/C++ 2017 standard to address this gap 
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Takeaways 
 Performance, portability, and productivity 
 pattern( Policy<Space> , Function ) + View with polymorphic array layout 
 Extensibility of patterns, policies, spaces, and array layout abstractions 

=> future proofing versus architectural evolution 

 Negligible performance overhead versus native implementation 

 Current & future R&D 
 Task-dag and hybrid task-data parallelism; already prototyped on CPU 
 Graph analytics algorithms; prototyped on CPU and GPU 
 Thread-scalable dynamic data structures 
 Embedded instrumentation for profiling, debugging, etc. 
 Remote memory spaces with asynchronous deep_copy and atomics for 

shmem-like functionality 

 Evolving: Pure R&D (2010-2014) to R&D + Production (2015- ) 
 Applications and domain libraries are integrating Kokkos now 
 Available via GitHub FY15/Q3 
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Performance Evaluations 
(as time permits) 



Evaluate Performance Impact of Array Layout 
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 Molecular dynamics computational kernel in miniMD 
 Simple Lennard Jones force model: 
 Atom neighbor list to avoid N2 computations 
 

 

 

 Test Problem 
 864k atoms, ~77 neighbors 
 2D neighbor array 
 Different layouts CPU vs GPU 
 Random read ‘pos’ through 

GPU texture cache  
 Large performance loss 

with wrong array layout 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 
} 
f(i) = f_i; 
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Evaluate Performance Overhead of Abstraction 
Kokkos competitive with native programming models 

 MiniFE: finite element linear system iterative solver mini-app 

 Compare to versions specialized for programming models 

 Running on hardware testbeds 
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Kokkos’ thread-scalable (lock-free) 
Unordered Map Performance Evaluation 
 Parallel-for insert to 88% full with 16x redundant inserts 

 Near – contiguous work indices [iw,iw+16) insert same keys 
 Far – strided work indices insert same keys 

 Single Accelerator Performance Tests 
 NVidia Kepler K40X, 12Gbytes 
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes 
 Limit use to 60 cores, 4 hyperthreads/core 
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 K40X dramatically better 
performance 
 Xeon Phi implementation 

optimized using explicit 
non-caching prefetch 
 Theory: due to cache 

coherency protocols and 
atomics’ performance 
 



Tpetra: Domain Specific Library Layer for 
Sparse Linear Algebra Solvers 

 Funded by ASC/Algorithms (not funded through Kokkos)  
 Tpetra: Sandia’s templated C++ library for sparse linear algebra 
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ... 
 Incremental refactoring from pure-MPI to MPI+Kokkos 

 CUDA UVM (unified virtual memory) codesign success 
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration 
 Hidden in Kokkos, can neglect memory spaces and maintain correctness 
 Enables incremental refactoring and testing 

 Early access to UVM a win-win 
 Expedited refactoring + early evaluation 
 Identified performance issue in driver 
 NVIDIA fixed before their release 

 

18 



19 

MiniFENL Proxy Application 
 Solve nonlinear finite element problem via Newton iteration 

 Focus on construction and fill of sparse linear system 
 Thread safe, thread scalable, and performant algorithms  
 Evaluate thread-parallel capabilities and programming models 

 Construct sparse linear system graph and coefficient arrays 
 Map finite element mesh connectivity to degree of freedom graph 
 Thread-scalable algorithm for graph construction 

 Compute nonlinear residual and Jacobian 
 Thread-parallel finite element residual and Jacobian 
 Atomic-add to fill element coefficients into linear system 

 Atomic-add for thread safety, performance? 

 Solve linear system for Newton iteration 
 



Thread-Scalable Fill of Sparse Linear System 
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 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏� 

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ? 
 Scatter-Atomic-Add 

+ Simpler 
+ Less memory 
– Slower HW atomic 

 Gather-Sum 
+ Bit-wise reproducibility 

 Performance win? 
 Scatter-atomic-add 
 ~equal Xeon PHI 
 40% faster Kepler GPU 

 Pattern chosen 
 Feedback to HW vendors: 

performant atomics 
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Thread-Scalable Sparse Matrix Construction 
 MiniFENL: Construct sparse matrix graph from FEM connectivity 
 Thread scalable algorithm for constructing a data structure 

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs 
2. Parallel-scan : sparse matrix rows’ column counts into row offsets 
3. Parallel-for : query unordered map to fill sparse matrix column-index array 
4. Parallel-for : sort rows’ column-index subarray 
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 Pattern and tools generally applicable to construction and 
dynamic modification of data structures  
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LAMMPS Porting Performance Evaluation 
 LAMMPS : molecular dynamics application 
 Fully MPI-only parallel with some (prototype) thread-parallel user packages 
 Architecture specific with redundantly implemented physics 

 Incrementally refactoring to MPI+Kokkos parallel 
 Goal: collapse redundantly implemented physics into “core” code base 

 MPI+Kokkos performing as well or better than thread-parallel user packages 
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