
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos:
Enabling Performance, Portability,

and Productivity
for C++ Applications and Libraries

ASC-ASCR ECI PM/E Workshop
March 9-11, 2015

Vision for Hierarchical Parallelism
 “MPI + Kokkos” Programming Model, separate concerns
 Intra-node parallelism concerns: heterogeneity & diversity
 Processors (CPU, GPU, PIM, ...) have diverse performance requirements
 Memory systems have diverse capabilities and performance characteristics
 Vendors have diverse programming models for optimal utilization of their hardware

 Standardized performance portable programming model?
 Vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Programming model must address heterogeneity & diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

 Emphasis: Portability, Performance, and Productivity
 Defined and implement necessary abstractions as intuitively as possible

1

Application and Domain Specific Library Layer

2

Kokkos: A Layered Collection of C++ Libraries
 Applications and Domain Libraries written in Standard C++
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...
 Required C++1998 standard (supported everywhere except IBM’s old xlC)
 Moving to C++2011 for lambda syntax ← productivity
 Vendors will soon have sufficient C++2011 language compliance

 Kokkos implemented with C++ template meta-programming
 In spirit of TBB, Thrust & CUSP, C++AMP, ...

Back-ends: Cuda, OpenMP, pthreads, Qthreads, hwloc, ...

Sparse Linear Algebra (in Trilinos)
Kokkos Containers
Kokkos Core

3

Ongoing Testing and Evaluation
 Mini-applications, applications, and

domain libraries using abstractions,
evaluating productivity
 Routinely testing functionality,

portability, and performance on the
Sandia NNSA Architecture Testbeds
 Diverse set of compilers & versions

 Using best performing native back-
ends to maintain nearly-native
implementation performance
 Parallel dispatch
 Memory management
 Atomic operations

 TBD back-end : HSA for AMD

✔ Intel Xeon Phi

✔ Intel Xeon

✔ NVIDIA GPUs

✔ IBM POWER7+ and POWER8

✔ ARM AArch64

? AMD APU-GPU

✔ AMD APU-CPU

ACES Trinity and NERSC Cori

LLNL Sierra and ORNL Summit

Alternative Architectures

4

Some Projects leveraging Kokkos for MPI+X
 Trilinos / Tpetra : foundational data structures and kernels for sparse linear

algebra; Mark Hoemmen, Christian Trott
 Trilinos / Stokhos : accelerating embedded UQ ; Eric Phipps
 LAMMPS : molecular dynamics; Christian Trott
 Albany : finite elements applied to ice sheets, atmosphere, mechanics,

quantum devices; Andy Salinger, Irina Demeshko
 ASCR Multiphysics MHD; Roger Pawlowski and Eric Cyr
 FASTMath SciDAC / Graph Algorithms : Siva Rajamanickam
 Zoltan / Graph Coloring : fast threaded graph coloring to identify independent

sets of work for task parallelism; Erik Boman, Siva Rajamanickam
 EMPRESS and miniPIC : particle-in-cell ; Matt Bettencourt
 miniAero : CFD finite element mini-application ; Ken Franco
 miniContact : contact detection for solid mechanics ; Glen Hansen
 SHIFT @ ORNL; Steve Hamilton
 Kokkos SNL/LDRD : directed acyclic graph of internally data parallel tasks
 Uintah : A Unified Heterogeneous Task Scheduling and Runtime System,

switching to Kokkos for local data parallelism

5

Challenges: Performance, Portability, Productivity
Best (good) performance requires computations to
implement architecture-specific memory access patterns
 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Array alignment for cache-lines and vector units
 Hyperthreads’ cooperative use of L1 cache

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
 Has led to architecture specific re-writes

This has been the wrong concern / approach
Right: What abstractions for Performance, Portability, Productivity?

6

Kokkos’ Approach
Integrated mapping of thread parallel computations and

multidimensional array data onto manycore spaces
1. Map user’s parallel computations to threads
 User selects parallel pattern: parallel-for, parallel-reduce, parallel-task, ...
 User implements parallel loop/task body as C++ function or lambda
 Kokkos calls user’s code from architecture’s “hardware” threads

2. Provide multidimensional array with a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
 Kokkos chooses layout for architecture-specific memory access pattern
 Layout changes are invisible to user code
IF user code honors Kokkos’ simple array API: a(i,j,k,...)

 Polymorphic multidimensional array layout

3. Enable portable access to special hardware capabilities
 Atomic operations for thread safety
 GPU texture cache to speed up read-only random access patterns

7

Spaces, Policies, and Patterns
 Execution Space : where functions execute
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

 Memory Space : where data resides in the system hierarchy
AND what execution space can access that data
 Differentiated by access performance; e.g., latency & bandwidth

 Execution Policy : how (and where) a user function is executed
 E.g., data parallel range : concurrently call function(i) for i = [0..N)
 User’s function is a C++ functor or C++11 lambda

 Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...

 Compose: pattern + execution policy + user function; e.g.,
parallel_pattern(Policy<Space>, Function);
 Execute Function in Space according to pattern and Policy

 Extensible spaces, policies, and patterns

8

Parallel Execution API (simple with C++11)
parallel_pattern(Policy<Space> , UserFunction)

 User Function can be simple with C++11 Lambda
parallel_for(N , KOKKOS_LAMBDA(int i)
 { y(i) = alpha * x(i) + y(i); }
);
parallel_reduce(N , KOKKOS_LAMBDA(int i , double & value)
 { value += x(i) * y(i); }
 , result);

 Kokkos manages scheduling and inter-thread communication
 Execution Policy : flexibility & extensibility
 RangePolicy : call function thread parallel with i = [0..N)
 TeamPolicy : two-level parallelism with team collectives and shared memory
 Experimental three-level policy with explicit level for vectorization

 TaskPolicy : experimental using SNL’s Qthreads runtime
? IndexSetPolicy for RAJA loops ?
 Functor-class can have multiple parallel user functions

9

Team Policy : express maximum parallelism
 Two-level parallel sparse matrix-vector multiply example:
parallel_for(TeamPolicy<Space>(nTeam,nThreadPerTeam) ,
 KOKKOS_LAMBDA(const TeamPolicy<Space>::member_type & member){
 double result = 0 ;
 const int row = member.league_rank();
 parallel_reduce(TeamThreadLoop(member,icol(row),icol(row+1)),
 [&](int j , double & val) { val += A(j) * X(jcol(j)); },
 result);
 if (member.team_rank() == 0) Y(row) = result ;
 }
);

 Two level Team Policy : (#Teams * #Threads/Team)
 Threads within an executing team :
 Must cooperatively utilize memory and execution resources
 Guaranteed concurrent and have team-collective operations
 May have team-shared scratch memory

 Team ~ GPU thread block
 Team ~ Xeon Phi shared L1 cache hyperthreads

10

Multidimensional Array View API (simple)
 Classical, intuitive abstraction in scientific & engineering codes
 View< double**[3][8] , Space > a(“a”,N,M);
 Allocate array data in Memory Space with dimensions [N][M][3][8]
 Each * indicates a runtime supplied dimension
 Proposing C++ standard improvement to enable View<double[][][3][8],Space>

 a(i,j,k,l) : user accesses array data through classical, intuitive API

 New abstraction: polymorphic array layout for architecture-
specific memory access patterns
 Kokkos transparently chooses array layout appropriate for “Space”
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory
 Optional array bounds checking of indices in debug compile

 deep_copy(destination_view , source_view);
 Copy array data of ‘source_view’ to array data of ‘destination_view’
 Kokkos policy: never hide an expensive deep copy operation
Space in the memory hierarchy: coherency domains, NVRAM, remote, ...

11

Array View API (advanced)
 View<ArrayType,Layout,Space,Attributes>
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions
 Layout: user can override Kokkos’ choice for layout
 Attributes: user’s access intentions

 Why manually specify Layout ?
 Force compatibility with legacy code while incrementally porting
 Optimize performance with “plugged in” layout

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
 Tiling layout hidden from user code m(i,j)

 Access intent attributes
 Easily and portably provide access to specialized hardware / runtime
 Indicate const and random access to utilize GPU texture cache

 View< const double **, Cuda, RandomAccess> b = a ;

 Subarray views of array views
 Y = subview(X , ...range_and_index_argument_list...);

12

Atomic operations
atomic_exchange, atomic_compare_exchange_strong,
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and

 Thread-scalability of non-trivial algorithms and data structures
 Essential for lock-free implementations
 Concurrent summations to shared variables
 E.g., finite element computations summing to shared nodes

 Updating shared dynamic data structure
 E.g., append to a shared array or insert into a shared map

 Portably map to compiler/hardware specific capabilities
 GNU and CUDA extensions when available
 Current: any 32bit or 64bit type, may use CAS-loop implementation
 Future: any data type via “sharded lock” pattern

 ISO/C++ 2011 and 2014 standards not adequate for HPC
 Proposed improvement of ISO/C++ 2017 standard to address this gap

13

Takeaways
 Performance, portability, and productivity
 pattern(Policy<Space> , Function) + View with polymorphic array layout
 Extensibility of patterns, policies, spaces, and array layout abstractions

=> future proofing versus architectural evolution

 Negligible performance overhead versus native implementation

 Current & future R&D
 Task-dag and hybrid task-data parallelism; already prototyped on CPU
 Graph analytics algorithms; prototyped on CPU and GPU
 Thread-scalable dynamic data structures
 Embedded instrumentation for profiling, debugging, etc.
 Remote memory spaces with asynchronous deep_copy and atomics for

shmem-like functionality

 Evolving: Pure R&D (2010-2014) to R&D + Production (2015-)
 Applications and domain libraries are integrating Kokkos now
 Available via GitHub FY15/Q3

14

Performance Evaluations
(as time permits)

Evaluate Performance Impact of Array Layout

15

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

16

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

17

Kokkos’ thread-scalable (lock-free)
Unordered Map Performance Evaluation
 Parallel-for insert to 88% full with 16x redundant inserts

 Near – contiguous work indices [iw,iw+16) insert same keys
 Far – strided work indices insert same keys

 Single Accelerator Performance Tests
 NVidia Kepler K40X, 12Gbytes
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes
 Limit use to 60 cores, 4 hyperthreads/core

0

5

10

15

20

1E+04 1E+05 1E+06 1E+07

na
no

se
c

/
at

te
m

pt
ed

in

se
rt

map capacity

Phi-240, far

Phi-240, near

K40X, far

K40X, near

 K40X dramatically better
performance
 Xeon Phi implementation

optimized using explicit
non-caching prefetch
 Theory: due to cache

coherency protocols and
atomics’ performance

Tpetra: Domain Specific Library Layer for
Sparse Linear Algebra Solvers

 Funded by ASC/Algorithms (not funded through Kokkos)
 Tpetra: Sandia’s templated C++ library for sparse linear algebra
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ...
 Incremental refactoring from pure-MPI to MPI+Kokkos

 CUDA UVM (unified virtual memory) codesign success
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
 Hidden in Kokkos, can neglect memory spaces and maintain correctness
 Enables incremental refactoring and testing

 Early access to UVM a win-win
 Expedited refactoring + early evaluation
 Identified performance issue in driver
 NVIDIA fixed before their release

18

19

MiniFENL Proxy Application
 Solve nonlinear finite element problem via Newton iteration

 Focus on construction and fill of sparse linear system
 Thread safe, thread scalable, and performant algorithms
 Evaluate thread-parallel capabilities and programming models

 Construct sparse linear system graph and coefficient arrays
 Map finite element mesh connectivity to degree of freedom graph
 Thread-scalable algorithm for graph construction

 Compute nonlinear residual and Jacobian
 Thread-parallel finite element residual and Jacobian
 Atomic-add to fill element coefficients into linear system

 Atomic-add for thread safety, performance?

 Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System

20

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

21

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

22

LAMMPS Porting Performance Evaluation
 LAMMPS : molecular dynamics application
 Fully MPI-only parallel with some (prototype) thread-parallel user packages
 Architecture specific with redundantly implemented physics

 Incrementally refactoring to MPI+Kokkos parallel
 Goal: collapse redundantly implemented physics into “core” code base

 MPI+Kokkos performing as well or better than thread-parallel user packages

	Kokkos:�Enabling Performance, Portability, and Productivity�for C++ Applications and Libraries
	Vision for Hierarchical Parallelism
	Kokkos: A Layered Collection of C++ Libraries
	Ongoing Testing and Evaluation
	Some Projects leveraging Kokkos for MPI+X
	Challenges: Performance, Portability, Productivity�Best (good) performance requires computations to implement architecture-specific memory access patterns
	Kokkos’ Approach
	Spaces, Policies, and Patterns
	Parallel Execution API (simple with C++11)
	Team Policy : express maximum parallelism
	Multidimensional Array View API (simple)
	Array View API (advanced)
	Atomic operations
	Takeaways
	Performance Evaluations�(as time permits)
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Kokkos’ thread-scalable (lock-free)�Unordered Map Performance Evaluation
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	MiniFENL Proxy Application
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	LAMMPS Porting Performance Evaluation

