
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos:
Enabling Performance, Portability,

and Productivity
for C++ Applications and Libraries

ASC-ASCR ECI PM/E Workshop
March 9-11, 2015

Vision for Hierarchical Parallelism
 “MPI + Kokkos” Programming Model, separate concerns
 Intra-node parallelism concerns: heterogeneity & diversity
 Processors (CPU, GPU, PIM, ...) have diverse performance requirements
 Memory systems have diverse capabilities and performance characteristics
 Vendors have diverse programming models for optimal utilization of their hardware

 Standardized performance portable programming model?
 Vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Programming model must address heterogeneity & diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

 Emphasis: Portability, Performance, and Productivity
 Defined and implement necessary abstractions as intuitively as possible

1

Application and Domain Specific Library Layer

2

Kokkos: A Layered Collection of C++ Libraries
 Applications and Domain Libraries written in Standard C++
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...
 Required C++1998 standard (supported everywhere except IBM’s old xlC)
 Moving to C++2011 for lambda syntax ← productivity
 Vendors will soon have sufficient C++2011 language compliance

 Kokkos implemented with C++ template meta-programming
 In spirit of TBB, Thrust & CUSP, C++AMP, ...

Back-ends: Cuda, OpenMP, pthreads, Qthreads, hwloc, ...

Sparse Linear Algebra (in Trilinos)
Kokkos Containers
Kokkos Core

3

Ongoing Testing and Evaluation
 Mini-applications, applications, and

domain libraries using abstractions,
evaluating productivity
 Routinely testing functionality,

portability, and performance on the
Sandia NNSA Architecture Testbeds
 Diverse set of compilers & versions

 Using best performing native back-
ends to maintain nearly-native
implementation performance
 Parallel dispatch
 Memory management
 Atomic operations

 TBD back-end : HSA for AMD

✔ Intel Xeon Phi

✔ Intel Xeon

✔ NVIDIA GPUs

✔ IBM POWER7+ and POWER8

✔ ARM AArch64

? AMD APU-GPU

✔ AMD APU-CPU

ACES Trinity and NERSC Cori

LLNL Sierra and ORNL Summit

Alternative Architectures

4

Some Projects leveraging Kokkos for MPI+X
 Trilinos / Tpetra : foundational data structures and kernels for sparse linear

algebra; Mark Hoemmen, Christian Trott
 Trilinos / Stokhos : accelerating embedded UQ ; Eric Phipps
 LAMMPS : molecular dynamics; Christian Trott
 Albany : finite elements applied to ice sheets, atmosphere, mechanics,

quantum devices; Andy Salinger, Irina Demeshko
 ASCR Multiphysics MHD; Roger Pawlowski and Eric Cyr
 FASTMath SciDAC / Graph Algorithms : Siva Rajamanickam
 Zoltan / Graph Coloring : fast threaded graph coloring to identify independent

sets of work for task parallelism; Erik Boman, Siva Rajamanickam
 EMPRESS and miniPIC : particle-in-cell ; Matt Bettencourt
 miniAero : CFD finite element mini-application ; Ken Franco
 miniContact : contact detection for solid mechanics ; Glen Hansen
 SHIFT @ ORNL; Steve Hamilton
 Kokkos SNL/LDRD : directed acyclic graph of internally data parallel tasks
 Uintah : A Unified Heterogeneous Task Scheduling and Runtime System,

switching to Kokkos for local data parallelism

5

Challenges: Performance, Portability, Productivity
Best (good) performance requires computations to
implement architecture-specific memory access patterns
 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Array alignment for cache-lines and vector units
 Hyperthreads’ cooperative use of L1 cache

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
 Has led to architecture specific re-writes

This has been the wrong concern / approach
Right: What abstractions for Performance, Portability, Productivity?

6

Kokkos’ Approach
Integrated mapping of thread parallel computations and

multidimensional array data onto manycore spaces
1. Map user’s parallel computations to threads
 User selects parallel pattern: parallel-for, parallel-reduce, parallel-task, ...
 User implements parallel loop/task body as C++ function or lambda
 Kokkos calls user’s code from architecture’s “hardware” threads

2. Provide multidimensional array with a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
 Kokkos chooses layout for architecture-specific memory access pattern
 Layout changes are invisible to user code
IF user code honors Kokkos’ simple array API: a(i,j,k,...)

 Polymorphic multidimensional array layout

3. Enable portable access to special hardware capabilities
 Atomic operations for thread safety
 GPU texture cache to speed up read-only random access patterns

7

Spaces, Policies, and Patterns
 Execution Space : where functions execute
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

 Memory Space : where data resides in the system hierarchy
AND what execution space can access that data
 Differentiated by access performance; e.g., latency & bandwidth

 Execution Policy : how (and where) a user function is executed
 E.g., data parallel range : concurrently call function(i) for i = [0..N)
 User’s function is a C++ functor or C++11 lambda

 Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...

 Compose: pattern + execution policy + user function; e.g.,
parallel_pattern(Policy<Space>, Function);
 Execute Function in Space according to pattern and Policy

 Extensible spaces, policies, and patterns

8

Parallel Execution API (simple with C++11)
parallel_pattern(Policy<Space> , UserFunction)

 User Function can be simple with C++11 Lambda
parallel_for(N , KOKKOS_LAMBDA(int i)
 { y(i) = alpha * x(i) + y(i); }
);
parallel_reduce(N , KOKKOS_LAMBDA(int i , double & value)
 { value += x(i) * y(i); }
 , result);

 Kokkos manages scheduling and inter-thread communication
 Execution Policy : flexibility & extensibility
 RangePolicy : call function thread parallel with i = [0..N)
 TeamPolicy : two-level parallelism with team collectives and shared memory
 Experimental three-level policy with explicit level for vectorization

 TaskPolicy : experimental using SNL’s Qthreads runtime
? IndexSetPolicy for RAJA loops ?
 Functor-class can have multiple parallel user functions

9

Team Policy : express maximum parallelism
 Two-level parallel sparse matrix-vector multiply example:
parallel_for(TeamPolicy<Space>(nTeam,nThreadPerTeam) ,
 KOKKOS_LAMBDA(const TeamPolicy<Space>::member_type & member){
 double result = 0 ;
 const int row = member.league_rank();
 parallel_reduce(TeamThreadLoop(member,icol(row),icol(row+1)),
 [&](int j , double & val) { val += A(j) * X(jcol(j)); },
 result);
 if (member.team_rank() == 0) Y(row) = result ;
 }
);

 Two level Team Policy : (#Teams * #Threads/Team)
 Threads within an executing team :
 Must cooperatively utilize memory and execution resources
 Guaranteed concurrent and have team-collective operations
 May have team-shared scratch memory

 Team ~ GPU thread block
 Team ~ Xeon Phi shared L1 cache hyperthreads

10

Multidimensional Array View API (simple)
 Classical, intuitive abstraction in scientific & engineering codes
 View< double**[3][8] , Space > a(“a”,N,M);
 Allocate array data in Memory Space with dimensions [N][M][3][8]
 Each * indicates a runtime supplied dimension
 Proposing C++ standard improvement to enable View<double[][][3][8],Space>

 a(i,j,k,l) : user accesses array data through classical, intuitive API

 New abstraction: polymorphic array layout for architecture-
specific memory access patterns
 Kokkos transparently chooses array layout appropriate for “Space”
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory
 Optional array bounds checking of indices in debug compile

 deep_copy(destination_view , source_view);
 Copy array data of ‘source_view’ to array data of ‘destination_view’
 Kokkos policy: never hide an expensive deep copy operation
Space in the memory hierarchy: coherency domains, NVRAM, remote, ...

11

Array View API (advanced)
 View<ArrayType,Layout,Space,Attributes>
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions
 Layout: user can override Kokkos’ choice for layout
 Attributes: user’s access intentions

 Why manually specify Layout ?
 Force compatibility with legacy code while incrementally porting
 Optimize performance with “plugged in” layout

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
 Tiling layout hidden from user code m(i,j)

 Access intent attributes
 Easily and portably provide access to specialized hardware / runtime
 Indicate const and random access to utilize GPU texture cache

 View< const double **, Cuda, RandomAccess> b = a ;

 Subarray views of array views
 Y = subview(X , ...range_and_index_argument_list...);

12

Atomic operations
atomic_exchange, atomic_compare_exchange_strong,
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and

 Thread-scalability of non-trivial algorithms and data structures
 Essential for lock-free implementations
 Concurrent summations to shared variables
 E.g., finite element computations summing to shared nodes

 Updating shared dynamic data structure
 E.g., append to a shared array or insert into a shared map

 Portably map to compiler/hardware specific capabilities
 GNU and CUDA extensions when available
 Current: any 32bit or 64bit type, may use CAS-loop implementation
 Future: any data type via “sharded lock” pattern

 ISO/C++ 2011 and 2014 standards not adequate for HPC
 Proposed improvement of ISO/C++ 2017 standard to address this gap

13

Takeaways
 Performance, portability, and productivity
 pattern(Policy<Space> , Function) + View with polymorphic array layout
 Extensibility of patterns, policies, spaces, and array layout abstractions

=> future proofing versus architectural evolution

 Negligible performance overhead versus native implementation

 Current & future R&D
 Task-dag and hybrid task-data parallelism; already prototyped on CPU
 Graph analytics algorithms; prototyped on CPU and GPU
 Thread-scalable dynamic data structures
 Embedded instrumentation for profiling, debugging, etc.
 Remote memory spaces with asynchronous deep_copy and atomics for

shmem-like functionality

 Evolving: Pure R&D (2010-2014) to R&D + Production (2015-)
 Applications and domain libraries are integrating Kokkos now
 Available via GitHub FY15/Q3

14

Performance Evaluations
(as time permits)

Evaluate Performance Impact of Array Layout

15

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

16

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

17

Kokkos’ thread-scalable (lock-free)
Unordered Map Performance Evaluation
 Parallel-for insert to 88% full with 16x redundant inserts

 Near – contiguous work indices [iw,iw+16) insert same keys
 Far – strided work indices insert same keys

 Single Accelerator Performance Tests
 NVidia Kepler K40X, 12Gbytes
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes
 Limit use to 60 cores, 4 hyperthreads/core

0

5

10

15

20

1E+04 1E+05 1E+06 1E+07

na
no

se
c

/
at

te
m

pt
ed

in

se
rt

map capacity

Phi-240, far

Phi-240, near

K40X, far

K40X, near

 K40X dramatically better
performance
 Xeon Phi implementation

optimized using explicit
non-caching prefetch
 Theory: due to cache

coherency protocols and
atomics’ performance

Tpetra: Domain Specific Library Layer for
Sparse Linear Algebra Solvers

 Funded by ASC/Algorithms (not funded through Kokkos)
 Tpetra: Sandia’s templated C++ library for sparse linear algebra
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ...
 Incremental refactoring from pure-MPI to MPI+Kokkos

 CUDA UVM (unified virtual memory) codesign success
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
 Hidden in Kokkos, can neglect memory spaces and maintain correctness
 Enables incremental refactoring and testing

 Early access to UVM a win-win
 Expedited refactoring + early evaluation
 Identified performance issue in driver
 NVIDIA fixed before their release

18

19

MiniFENL Proxy Application
 Solve nonlinear finite element problem via Newton iteration

 Focus on construction and fill of sparse linear system
 Thread safe, thread scalable, and performant algorithms
 Evaluate thread-parallel capabilities and programming models

 Construct sparse linear system graph and coefficient arrays
 Map finite element mesh connectivity to degree of freedom graph
 Thread-scalable algorithm for graph construction

 Compute nonlinear residual and Jacobian
 Thread-parallel finite element residual and Jacobian
 Atomic-add to fill element coefficients into linear system

 Atomic-add for thread safety, performance?

 Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System

20

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

21

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

22

LAMMPS Porting Performance Evaluation
 LAMMPS : molecular dynamics application
 Fully MPI-only parallel with some (prototype) thread-parallel user packages
 Architecture specific with redundantly implemented physics

 Incrementally refactoring to MPI+Kokkos parallel
 Goal: collapse redundantly implemented physics into “core” code base

 MPI+Kokkos performing as well or better than thread-parallel user packages

	Kokkos:�Enabling Performance, Portability, and Productivity�for C++ Applications and Libraries
	Vision for Hierarchical Parallelism
	Kokkos: A Layered Collection of C++ Libraries
	Ongoing Testing and Evaluation
	Some Projects leveraging Kokkos for MPI+X
	Challenges: Performance, Portability, Productivity�Best (good) performance requires computations to implement architecture-specific memory access patterns
	Kokkos’ Approach
	Spaces, Policies, and Patterns
	Parallel Execution API (simple with C++11)
	Team Policy : express maximum parallelism
	Multidimensional Array View API (simple)
	Array View API (advanced)
	Atomic operations
	Takeaways
	Performance Evaluations�(as time permits)
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Kokkos’ thread-scalable (lock-free)�Unordered Map Performance Evaluation
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	MiniFENL Proxy Application
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	LAMMPS Porting Performance Evaluation

