
‹#›‹#›

FASTMath Team
Lori Diachin, Institute Director

FASTMath Library use of Programming Models and
Tools

FASTMath SciDAC Institute

LLNL-PRES-501654

‹#›‹#›

The FASTMath SciDAC project focuses on the
development and use of mathematics software libraries

The FASTMath SciDAC Institute develops and deploys scalable
mathematical algorithms and software tools for reliable

simulation of complex physical phenomena and collaborates
with DOE domain scientists to ensure the usefulness and

applicability of FASTMath technologies

‹#›‹#›

FASTMath encompasses three broad topical areas
To

ol
s

fo
r P

ro
bl

em
 D

is
cr

et
iz

at
io

n

• Structured grid
technologies

• Unstructured
grid
technologies

• Adaptive mesh
refinement

• Complex
geometry

• High-order
discretizations

• Particle
methods

• Time
integration

So
lu

tio
n

of
 A

lg
eb

ra
ic

 S
ys

te
m

s

• Iterative
solution of
linear systems

• Direct solution
of linear
systems

• Nonlinear
systems

• Eigensystems
• Differential

variational
inequalities

H
ig

h
Le

ve
l I

nt
eg

ra
te

d
C

ap
ab

ili
tie

s • Adaptivity
through the
software stack

• Management
of field data

• Coupling
different
physics
domains

• Mesh/particle
coupling
methods

‹#›‹#›

BoxLib (Ann Almgren)
Chombo (Phil Colella)

FASTMath encompasses our algorithm development
in widely used software

Structured Mesh Tools

Zoltan (Karen Devine)
ParMA (Mark Shephard)

Partitioning Tools

PUIMI (Seegyoung Seol)
MeshAdapt (Mark Shephard)
MOAB (Vijay Mahadevan)
Mesquite (Lori Diachin)
PHASTA (Ken Jansen)
APF (Cameron Smith)

Unstructured Mesh Tools

Hypre (Rob Falgout)
PETSc (Barry Smith)
SuperLU (Sherry Li)
ML/Trilinos (Jonathan Hu)

Linear Solvers

PARPACK (Chao Yang)

Eigensolvers

SUNDIALS (Carol Woodward
PETSc (Barry Smith)
NOX/Trilinos (Andy Salinger)

Nonlinear Solvers/Differential
Variational Inequalities

FASTMath Software

SUNDIALS (Carol Woodward)
PETSc (Barry Smith)

Time Integrators

‹#›‹#›

Mark Adams
Ann Almgren
Phil Colella
Anshu Dubey
Dan Graves
Sherry Li
Lin Lin
Terry Ligocki
Mike Lijewski
Peter McCorquodale
Esmond Ng
Brian Van Straalen
Chao Yang
Subcontract: Jim Demmel

(UC Berkeley)

The FASTMath team includes experts from four national
laboratories and five universities

Lawrence Berkeley
National Laboratory

Jed Brown
Lois Curfman McInnes
Todd Munson
Vijay Mahadevan
Barry Smith
Subcontract: Jim Jiao

(SUNY Stony Brook)
Subcontract: Paul Wilson

(Univ of Wisconsin)

Argonne National Laboratory

Karen Devine
Glen Hansen
Jonathan Hu
Vitus Leung
Siva Rajamanickam
Michel Wolf
Andrew Salinger

Sandia National
Laboratories

E. Seegyoung Seol
Onkar Sahni
Mark Shephard
Cameron Smith

Subcontract: Ken Jansen
(UC Boulder)

Rensselear Polytechnic Inst.

Barna Bihari
Lori Diachin
Milo Dorr
Rob Falgout
Mark Miller
Jacob Schroder
Carol Woodward
Ulrike Yang
Subcontract: Carl Ollivier-Gooch

(Univ of British Columbia)
Subcontract: Dan Reynolds

(Southern Methodist)

Lawrence Livermore
National Laboratory

‹#›‹#›

Our strategy toward architecture awareness focuses on
both inter- and intra-node issues

• Reduce communication
• Increase concurrency
• Reduce synchronization
• Address memory footprint
• Enable large communication/computation

overlap

Inter-node:
Massive

Concurrency

• MPI + threads for many packages
• Compare task and data parallelism
• Thread communicator to allow passing of

thread information among libraries
• Low-level kernels for vector operations that

support hybrid programming models

Intra-node:
Deep NUMA

‹#›‹#›

• Adding course grained thread loop over blocks and micro-blocking
reduced communication costs and memory footprint; performance
improvements limited

Block structured AMR in Chombo
(MPI + OpenMP)

• Utility layer that allows support of both MPI and threads; showed
30% efficiency improvement and 10% memory reduction on BG/Q

Unstructured grids using Parallel
Control Utility (MPI and threads)

• Implementation in multi-dimensional jagged geometric partitioning
scaled to 8B elements on 64K nodes

Partitioning with Zoltan2 (MPI +
OpenMP)

• Aggregation of small BLAS operations into larger ones to hide long-
latency operations resulted in 2.7X faster performance and 5X
reduction in memory costs on 100-node GPU cluster

Direct linear solvers in
SuperLU_DIST (MPI +OpenMP +

CUDA)

• Introduction of a thread communicator allows passing this
information among libraries for portable performance with
maintainable kernels

Linear solver kernels (Pthreads
and OpenMP)

• New threaded kernels and integration with SuperLU_MT provide
speed up and flexibility

Time integrators in SUNDIALS
(MPI + OpenMP)

We are refactoring our software to support hybrid
programming models

‹#›‹#›

 Status: Most FASTMath library developers have experimented with MPI+X+Y;
limited experience with other models

• Pure MPI still very common in DOE application codes
• Most libraries support hybrid MPI+OpenMP models
• Some work with OpenCL/CUDA within their library, others hand off to CUDA libraries
• Eigensolvers has tried UPC++; others are interested

 Experience:
• Many increasingly feel that good performance can be achieved with MPI-only;

particularly on many-core architectures; particularly like the MPI-3 neighborhoods
• OpenMP occasionally delivered speed benefits; often delivered memory benefits
• OpenMP does not give enough control over thread placement; other aspects severely

limit performance
• UPC++ worked well for dense matrices, but had limitations for sparse matrices

 Take aways:
• Will need high-performance interoperability of programming models (avoiding locks etc)
• PGAS languages show promise, but still not ready for prime time
• Many still taking a ‘wait and see’ approach to programming models

Current experiences with programming models/systems

‹#›‹#›

 We surveyed 12 key FASTMath libraries to determine
• Challenges/strategies to support performance portability within

the library
• Challenges/strategies associated with portable performance

when using multiple packages together
• Key areas of future investigation

 Libraries:

FASTMath libraries are working toward performance
portability for current and next generation computing

 PETSc
 Hypre
 mueLu
 SuperLU
 SUNDIALS
 Eigensolvers/PARPACK

 Chombo
 BoxLib
 PUMI/AFP/PARMA/PCU
 MOAB
 Graph Algorithms
 Zoltan2

‹#›‹#›

 Particularly targeting portability for two classes of
architectures
• Hybrid multicore (CPU/GPU) systems
• Manycore systems

FASTMath defines portable performance from two
perspectives

End User of FASTMath Software: Same piece of code
(from the user perspective) runs on different architectures
with ‘good’ performance

Developer of FASTMath Software: A relatively small
amount of effort is needed to make a change to get good
performance within advertised (algorithmic or performance)
tolerances across both current and future architectures

‹#›‹#›

 Data management
• NUMA – multilevel memory management techniques (tiling and smart

task/data placement)
• Data motion distance
• Cache coherence

 Thread management
• Thread Placement
• Interaction of thread pools
• Oversubscription of thread resources
• Thread collectives/synchronization techniques

 Task-based parallelism
• When and how can these programming models be used
• Several exploring DAGs in their algorithms

The key challenges of on-node performance from a
library developer perspective

‹#›‹#›

 Execution models
• MPI + X + Y
• Lightweight MPI – lightweight

communication libraries
• PGAS experimentation

 Algorithmic changes
• Changes in algorithms to reduce

communication/increase
arithmetic intensity

• Fusion – pipelining – both with
and without communication

• Compute on the fly using fast
small memory to reduce storage
costs? Compression

Current thoughts on addressing on node
performance challenges within a single library

 Multiple kernel support
• Either hand coded or code

generated
• Code generation

 Data and execution
abstractions (e.g., templated
C++ approaches (Kokkos,
RAJA) or other libraries (TiDA))

 Cross-Compiler-based
approaches (ROSE, CHiLL)

 DSLs
 Interfaces/Tools

• API for communicating data layout
and location (pinning)

• Interfaces for thread pool/pinning
information

• Zoltan load
balance/partitioning/coloring

‹#›‹#›

 Status: Limited experimentation so far with code transformation tools and
compilation techniques

• Working with DTEC to experiment with DSL for compressible Navier-Stokes
• Using CHiLL compiler for block structured meshes on Edison and Titan
• SNL tools developers are increasingly using Kokkos to experiment with abstracting

data placement, thread placement, memory level hierarchies
 Experience:

• DSL allowed increased programmer productivity; still exploring performance
• CHiLL tool limited to working on one large C file; needed to fuse functionality to get it

to work well – does not yet handle Chombo library as written
• Kokkos functionality is expanding quickly and early performance results are

promising, but it is constrained to C++11
 Take aways:

• Tools such as these are needed, early experiences show promise
• Support for a broad array of scientific languages is needed
• More development is required before they are ready for even expert-level use, much

less broad deployment

Early experiences with code generation approaches
(ROSE, CHiLL, Kokkos)

‹#›‹#›

 Thread management
• Oversubscription of threads
• Programming model consistency

 Data management
• Need abstractions for transferring

information about original layout
• Understanding the costs of

moving data vs using given
layouts

• Transferring data among libraries
• Determining a priori optimization

of data layouts across libraries
• User decisions can significantly

impact data remap costs – make
this information transparent

• Increasing work done on data
while in Cache across libraries

Additional requirements of the programming models
arise when using multiple libraries packages together

 Performance diagnostics
• User decisions can significantly

impact data remap costs – make
this information transparent so
the the user knows the
implications of the choices they
are making

• Communicating performance to
the user to set expectations

 Resource management
• Making libraries small enough to

not swamp memory – heavily
templated libraries are a concern

• How much data is private and
must be replicated and how much
can be shared across processes
to minimize memory costs

• Libraries sharing/coordinating use
of fast memory and threads

‹#›‹#›

 Significant effort involved in refactoring a large library; cannot be done
lightly or often

 Interoperability of programming models is critical (MPI-3 + OpenMP,
PGAS + MPI, etc)

 Will need
• Additional abstractions for data and thread resource management
• Tools to understand performance, data movement, thread pinning…

 Many tools developed in X-Stack show promise, but are not yet ready for
expert-level (friendly) usage
• Many FASTMath participants willing to serve as early adopters, but

interoperability of our libraries will be required
• Note that the bar can be lower than ‘generally available”

Summary of the FASTMath experience to date

‹#›‹#›

QUESTIONS?

