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Agenda 
 
 
n  Evolution of OpenMP 
n  Who are the Users? 
n  Recent and On-going Change 
n  Potential Directions 



     

n  Portable parallel programming across shared 
memory architectures since 1997: 
q  Parallel Regions:  

n  OMP PARALLEL 
q  Worksharing:  

n  OMP DO, OMP SECTIONS 
n  MASTER, SINGLE  

q  Data Environment  
n  SHARED,PRIVATE,FIRSTPRIVATE,THREADPRIVATE 

q  Synchronization:  
n  ATOMIC,CRITICAL,BARRIER,ORDERED,FLUSH 

q  Runtime functions/environment variables 
n  OMP_NUM_THREADS, OMP_SCHEDULE, etc. 

#pragma omp parallel 
#pragma omp for schedule(dynamic) 

 for (I=0;I<N;I++){ 
  NEAT_STUFF(I); 
 } /* implicit barrier here */ 



Early User Experience, 2000 
Naval Research Lab 

n  NLOM, NCOM Ocean Models  
n  OpenMP significantly outperformed MPI on representative 

HALO benchmark 
q  Use OpenMP code if possible, else MPI  

n  OpenMP and shmem versions scale close to linearly up to 
112 nodes, MPI to 28 nodes, on Origin  



Proposed OpenMP Extensions, 1999  

n  SGI page-based data distribution extensions  
q  Allocates pages to memory across system nodes 
q  Preserves illusion of true shared memory 

n  HPF-style data mappings 
q  Poor performance on page-based system 
q  SGI, Compaq 
  

!$SGI      DISTRIBUTE array ( CYCLIC (1) ) 
!$OMP    PARALLEL DO PRIVATE ( i , active) 
!$OMP& SHARED (  level ) 
!$SGI+    AFFINITY (i) = DATA ( array ( i ) ) 
                DO i = 1,  max 
                     IF (   array ( i )  >= 1) then 
                          active = …. 
                          CALL solve ( active, level, …) 
                     END IF 
                 END DO 

“first-touch” default 
mapping works pretty well 
(if developer is aware of it) 



The OpenMP ARB 2002 

n  OpenMP is maintained by the OpenMP Architecture 
Review Board (the ARB), which 

n  Interprets OpenMP 
n  Writes new specifications - keeps OpenMP relevant 
n  Works to increase the impact of OpenMP 

n  Members are organizations - not individuals 
n  Industry: Compaq, Fujitsu, HP, IBM, Intel, Intel KAI, NEC, SGI, 

Sun 
n  Other: ASCI, cOMPunity 

q  Researchers participate via cOMPunity from 2002 on 



Industrial Mixer Code, 2002 



Omni Compiler: Cluster-enabled OpenMP, 2002 

n  OpenMP for a cluster (distributed memory system) 
q  message passing library (MPI, PVM) provides high performance, 

but difficult and cumbersome. 
n  Use software distributed shared memory system 

SCASH as underlying runtime system on cluster 
q  Page-based DSM 
q  Related Work: OpenMP compiler for TreadMarks by Rice (later clOMP) 

◆  “shmem” memory model 
w  All variables declared statically in 

global scope are private. 
w  The shared address space must 

be allocated by a library function at 
runtime. 

w  Example: SCASH, Unix 
“shmem” system call 

◆  OpenMP  
w  All variables are 

shared as defaults.  
w  No explicit shared 

memory allocation 

Omni OpenMP Compiler 



Task Translation to Reduce Synchronization 
 

   
 

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution 
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002 

n  Difficult to explicitly express 
computations as task graph 

n  Compiler translates 
“standard” OpenMP into 
collection of work units 
(tasks) and task graph 

n  Analyzes data usage per 
work unit to reduce 
synchronization   

n  Trade-off between load 
balance, co-mapping of work 
units that use same data 

n  What is “right” size of work 
unit? 
q  Might need to adjust at run time 

   



Cart3D OpenMP Scaling, ca. 2005 

n  OpenMP version uses same domain decomposition strategy as MPI for 
data locality, avoiding false sharing and fine-grained remote data access 

n  OpenMP version slightly outperforms MPI version on SGI Altix 3700BX2, 
both close to linear scaling. 

4.7 M cell mesh Space Shuttle Launch Vehicle example 

M∞ = 2.6 
α = 2.09º 
β = 0.8º 



OpenMP Targets, 1997 - 2005 

n  Initial 1997 release for scientific applications 
q  Tailored to array-based computations in Fortran 
q  Main market is small SMP workstation or PC 
q  C version increased range of SMP-parallel codes 

n  Provided by vendors on ccNUMA platforms 
q  SGI and Compaq, with extensions 

n  Multicore systems, ca. 2005 
q  General-purpose multicore programming 
q  Tasks, C and C++ bindings support this 
q  Growing compiler support (including ISVs) 

 



OpenMP 3.0 Introduces Tasks, 2008 

n  Tasks explicitly created and processed 

#pragma omp parallel 
{  
  #pragma omp single 
   {  
    p = listhead ; 
    while (p) {  
       #pragma omp task 
               process (p) 
       p=next (p) ; 
     }  
   }  
} 

q  Each encountering 
thread packages a 
new instance of a 
task (code and 
data) 

q  Some thread in the 
team executes the 
task 



OpenMP on Low-Power Architecture, 2009 

P
ar

al
le

l r
eg

io
n 

1

Start

End

Initialization

slave thread #1

snoop for nequest

Execute 
“micro_task()”

start
 msg

completion 
msgs

Initialization 
micro_task context

send request

Execute micro_task()

barrier

P
ar

al
le

l r
eg

io
n 

2

Initialization 
micro_task context

send request

Execute micro_task()

barrier

barrier

slave thread #1

snoop for nequest

Execute 
“micro_task()”

barrier

slave thread #1

snoop for nequest

Execute 
“micro_task()”

barrier
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The OpenMP ARB 2009 

n  OpenMP is maintained by the OpenMP Architecture 
Review Board (the ARB), which 

n  Interprets OpenMP 
n  Writes new specifications - keeps OpenMP relevant 
n  Works to increase the impact of OpenMP 

n  Members are organizations - not individuals 
q  Current members 

n  Permanent: AMD, Caps Entreprise, Cray, Fujitsu, HP, IBM, Intel, 
Microsoft, NEC, PGI, SGI,  Sun, Texas Instruments 

n  Auxiliary: ASCI, cOMPunity, EPCC, KSL, NASA, RWTH Aachen 

 www.compunity.org 



The OpenMP ARB 2015 

n  OpenMP is maintained by the OpenMP Architecture Review 
Board (the ARB), which 

n  Interprets OpenMP 
n  Writes new specifications - keeps OpenMP relevant 
n  Works to increase the impact of OpenMP 

n  Members are organizations - not individuals 
q  Current members 

n  Permanent: AMD, ARM, Convey, Cray, Fujitsu, HP, IBM, Intel, NEC, 
Nvidia, Oracle, Red Hat, PGI, Texas Instruments 

n  Auxiliary: ANL, ASC/LLNL, cOMPunity, EPCC, LANL, LBNL, NASA,  
ORNL, RWTH Aachen, SNL, TACC, University of Houston 

 www.openmp.org 

“High-level directive-based multi-language parallelism that is 
performant, productive and portable” 



OpenMP: Who are the Users?  

n  Small to moderately large scientific and 
technical applications  
q  Initially Fortran only, SMPs, SGI Origin (Altix) 

n  General-purpose multicore programming 
q  Tasks, C and C++ bindings 

n  Entry-level parallel programmers 
n  Embedded systems 

q  Tasks, kernel offloads 
n  Large-scale parallel computations 

q  Usually in conjunction with MPI 
16 



n  Oct 1997 – 1.0 Fortran 
n  Oct 1998 – 1.0 C/C++ 
n  Nov1999 – 1.1 Fortran: interpretations added 
n  Nov 2000 – 2.0 Fortran (F95, nested locks) 
n  Mar 2002 – 2.0 C/C++ 
n  May 2005 – 2.5 Fortran/C/C++   (one API, multiple bindings, memory 

model, ICVs,  terminology) 
n  May 2008 – 3.0 (task execution model, explicit tasks, parallelization 

of multiple loop levels, nested parallelism; wait policy) 
n  July 2011 - 3.1 (final, mergeable tasks, taskyield, atomic construct) 
n  July 2013 – 4.0 (support for devices, target and data mapping; SIMD 

loops; thread affinity; task dependences; user defined reductions) 

Runtime routines:  10 in 1.1; 19 in 3.0; 28 in 4.0 



OpenMP Locality Research  
Locations := Affinity Regions, Based on Locales, Places 

q  Represent execution environment by 
collection of “locations” (Chapel/X10) 

q  Map data, threads to a location; 
distribute data across locations 

q  Align computations with data’s 
location, or map them explicitly 

q  Significant performance boost on mid-
size SMP systems. 

Lei Huang, Haoqiang Jin, Barbara Chapman, Liqi Yi. Enabling Locality-Aware 
Computations in OpenMP. Scientific Computing, Vol 18, Numbers 3-4, 169-181, 
IOS Press Amsterdam, 2010 

q  OpenMP 3.0: privatize data where 
possible, optimize cache usage 

q  “First touch” Implicit data layout 



n  OpenMP Places and thread affinity policies 
q  OMP_PLACES to describe hardware regions  
q  affinity(spread|compact|true|false)	
  

n  SPREAD: spread threads evenly among the places 
spread	
  8	
  
 

n  COMPACT: collocate OpenMP thread with master 
thread 

compact	
  4	
  

OpenMP 4.0 Affinity  
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OpenMP for Accelerators 

while ((k<=mits)&&(error>tol)) 
{  
// a loop copying u[][] to uold[][] is omitted here 
 … 
 
 
#pragma omp parallel for private(resid,j,i) reduction(+:error) 
for (i=1;i<(n-1);i++) 
  for (j=1;j<(m-1);j++) 
  { 
    resid = (ax*(uold[i-1][j] + uold[i+1][j])\ 
        + ay*(uold[i][j-1] + uold[i][j+1])+ b * uold[i][j] - f[i][j])/b; 
    u[i][j] = uold[i][j] - omega * resid; 
    error = error + resid*resid ; 
  } // rest of the code omitted  ... 
} 

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \  
    f[0:n][0:m])  map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m]) 
 

#pragma omp target  device(gpu0) 

20 

Early Experiences With The OpenMP Accelerator Model; Chunhua Liao, Yonghong Yan, Bronis R. de Supinski, 
Daniel J. Quinlan and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013, September 2013 
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Looking Ahead: OpenMP 4.1 

n  Device construct enhancements 
q  more control and flexibility in specifying data movement between host 

and devices 
q  asynchronous, data flow execution support with addition of nowait and 

depends 
q  multiple devices 
q  “deep copy” for pointer-based structures/objects 

n  Loop parallelism enhancements 
q  extended ordered clause to support do-across (e.g. wavefront) 

parallelism for loop nests 
q  new taskloop construct for asynchronous loop parallelism with control 

over task grain size 
n  Array reductions for C and C++ 
n  Under consideration:  

q  memory affinity 
q  task priorities (very likely) 

 
On-going work also on interoperability: 
Resource management, other threads, other APIs, multiple OpenMP computations 



Feature Set: Future Directions 

q  Broad user base is a strength, but potential tension 
between general-purpose programming and HPC 
q  Sometimes seen in choice of defaults 

q  Continued enhancement of expressivity of tasks 
q  Data locality? Now we have 

q  Places, binding of threads to places; device data placement, data 
motion to/from devices, explicit data allocation 

q  (Soon) asynchronous computation on host and device 
 

q  How can we build on top of this? 
q  Affinity of data with places? Affinity of tasks to places? 
q  (Page-based?) Mapping / migration of data to collection of 

places? 
q  Modification of places? Virtualization? 
q  Additional memory allocation / mapping information? 



Subteams of Threads? GUI Threads? 

 for (j=0; j< ProcessingNum; j++) 
             #pragma omp for schedule(dynamic) 
             subteam(2:omp_get_num_threads()-1) 
                for (k=0; k<M; k++) { 
                   ProcessData(); // data processing  
                } // subteam-internal barrier 

Increases expressivity of single-level parallelism 

Thread Subteam: subset of 
threads in a team 
•  Overlap computation and 

communication (MPI) 
•  Concurrent worksharing regions 
•  Additional control of locality of 

computations and data 
•  Handle loops with little work 
 
 



Dynamic Program Adaptation 

q  Reasonably amenable to 
dynamic adaptation 
q  Adjustment of thread count, 

schedule 
q  Adaptive barriers, reduction 

routines 
q  Runtime decisions 
q  Tasks, mergeable 

q  Use of performance 
interface to inform dynamic 
tools 
q  Can help adjust data layout, 

find memory performance 
problems 

q  Need to develop more 
runtime techniques 

OpenMP Program 
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Performance Tool 
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XPRESS: OpenMP over HPX 
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Architecture-Aware Task Translation 
n  Restructure work units 

q  Merging (or splitting) work units for better granularity 
q  Guided by parameterized cost model 

n  Application structural representation 
q  Work units and dependences 
q  Data distribution among places  

n  Compile time approximation 
q  Data mapping onto places 
q  Data binding with work unit 
q  Decision honored by runtime  

n  But may be adapted and refined. 
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3.4 Related Work

Broadly speaking, the REX programing model is designed to address concerns and directions
expressed at the DoE 2011 Workshop on Exascale Programming Challenges [17]. The REX
programming model leverage multiple previous language e�orts, including asynchronous task
parallel models from Cilk [22], asynchronous PGAS languages such as X10 [26], [79] and
Chapel [4], and the data parallel model in OpenMP [72] and OpenACC [71] standard. It also
borrow concepts from data-flow, functional and single-assignment programming models [6], [20],
[21], [27], [68]. One of the distinguishing features of REX is its combination of these concepts with
an integration with MPI for inter-node communication. Also, REX is geared towards creating
higher-level constructs similar to the multiresolution programming model Chapel [4], but through
a creation of domain-specific languages suitable for compilation on heterogeneous platforms.

4 REX Compiler Research
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Fig. 6. REX Machine-Aware Compilation Environment

The extent to which a compiler is able to optimize code is highly dependent on the information
available to it about the program and its data usage, and how well it is able to speculate on the
runtime behavior. The REX compiler will make extensive use of the explicit data and parallelism
information contained in a REX program in order to perform aggressive optimizations that are
tailored to the target node architectures. The REX compiler research includes the following:

• We will design an Application Structural Representation (ASR) for REX programs. The
high-level representation of an application’s parallelism and data access patterns provided
by the ASR will be used to assist parallelism-aware compilation, pass information to the
runtime, and support interaction with both expert programmers and performance tools.

• We will perform research on machine-aware compilation and memory optimization on
di�erent architectures, including current and future architectures that are not conventional
but may influence parts of the exascale hardware roadmap.

• The REX compiler will support generation of multiple code versions for data parallel regions,
e.g. generating both CPU and GPGPU versions from a single source.

An “all task” approach 



Program Development: Observations 

q  Scalability greatly influenced by programming 
style, code structuring and inherent suitability. 

q  OpenMP is a prescriptive model 
q  Coarse grain approach to parallelization best, but 

might require significant rewriting of code 
q  Data layout, access pattern (locality, affinity)  has 

always mattered for performance 
q  Overheads of features understood 
q  Cache effects, especially false sharing, can distort 

performance  
q  Tool support for creation of OpenMP code with 

high locality needed 
 



   Questions?  


