
The Future of OpenMP

Barbara Chapman
University of Houston

http://www.cs.uh.edu/~hpctools

DOE PModels Workshop,
March 2015

Agenda

n  Evolution of OpenMP
n  Who are the Users?
n  Recent and On-going Change
n  Potential Directions

n  Portable parallel programming across shared
memory architectures since 1997:
q  Parallel Regions:

n  OMP PARALLEL
q  Worksharing:

n  OMP DO, OMP SECTIONS
n  MASTER, SINGLE

q  Data Environment
n  SHARED,PRIVATE,FIRSTPRIVATE,THREADPRIVATE

q  Synchronization:
n  ATOMIC,CRITICAL,BARRIER,ORDERED,FLUSH

q  Runtime functions/environment variables
n  OMP_NUM_THREADS, OMP_SCHEDULE, etc.

#pragma omp parallel
#pragma omp for schedule(dynamic)

 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 } /* implicit barrier here */

Early User Experience, 2000
Naval Research Lab

n  NLOM, NCOM Ocean Models
n  OpenMP significantly outperformed MPI on representative

HALO benchmark
q  Use OpenMP code if possible, else MPI

n  OpenMP and shmem versions scale close to linearly up to
112 nodes, MPI to 28 nodes, on Origin

Proposed OpenMP Extensions, 1999

n  SGI page-based data distribution extensions
q  Allocates pages to memory across system nodes
q  Preserves illusion of true shared memory

n  HPF-style data mappings
q  Poor performance on page-based system
q  SGI, Compaq

!$SGI DISTRIBUTE array (CYCLIC (1))
!$OMP PARALLEL DO PRIVATE (i , active)
!$OMP& SHARED (level)
!$SGI+ AFFINITY (i) = DATA (array (i))
 DO i = 1, max
 IF (array (i) >= 1) then
 active = ….
 CALL solve (active, level, …)
 END IF
 END DO

“first-touch” default
mapping works pretty well
(if developer is aware of it)

The OpenMP ARB 2002

n  OpenMP is maintained by the OpenMP Architecture
Review Board (the ARB), which

n  Interprets OpenMP
n  Writes new specifications - keeps OpenMP relevant
n  Works to increase the impact of OpenMP

n  Members are organizations - not individuals
n  Industry: Compaq, Fujitsu, HP, IBM, Intel, Intel KAI, NEC, SGI,

Sun
n  Other: ASCI, cOMPunity

q  Researchers participate via cOMPunity from 2002 on

Industrial Mixer Code, 2002

Omni Compiler: Cluster-enabled OpenMP, 2002

n  OpenMP for a cluster (distributed memory system)
q  message passing library (MPI, PVM) provides high performance,

but difficult and cumbersome.
n  Use software distributed shared memory system

SCASH as underlying runtime system on cluster
q  Page-based DSM
q  Related Work: OpenMP compiler for TreadMarks by Rice (later clOMP)

◆  “shmem” memory model
w  All variables declared statically in

global scope are private.
w  The shared address space must

be allocated by a library function at
runtime.

w  Example: SCASH, Unix
“shmem” system call

◆  OpenMP
w  All variables are

shared as defaults.
w  No explicit shared

memory allocation

Omni OpenMP Compiler

Task Translation to Reduce Synchronization

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002

n  Difficult to explicitly express
computations as task graph

n  Compiler translates
“standard” OpenMP into
collection of work units
(tasks) and task graph

n  Analyzes data usage per
work unit to reduce
synchronization

n  Trade-off between load
balance, co-mapping of work
units that use same data

n  What is “right” size of work
unit?
q  Might need to adjust at run time

Cart3D OpenMP Scaling, ca. 2005

n  OpenMP version uses same domain decomposition strategy as MPI for
data locality, avoiding false sharing and fine-grained remote data access

n  OpenMP version slightly outperforms MPI version on SGI Altix 3700BX2,
both close to linear scaling.

4.7 M cell mesh Space Shuttle Launch Vehicle example

M∞ = 2.6
α = 2.09º
β = 0.8º

OpenMP Targets, 1997 - 2005

n  Initial 1997 release for scientific applications
q  Tailored to array-based computations in Fortran
q  Main market is small SMP workstation or PC
q  C version increased range of SMP-parallel codes

n  Provided by vendors on ccNUMA platforms
q  SGI and Compaq, with extensions

n  Multicore systems, ca. 2005
q  General-purpose multicore programming
q  Tasks, C and C++ bindings support this
q  Growing compiler support (including ISVs)

OpenMP 3.0 Introduces Tasks, 2008

n  Tasks explicitly created and processed

#pragma omp parallel
{
 #pragma omp single
 {
 p = listhead ;
 while (p) {
 #pragma omp task
 process (p)
 p=next (p) ;
 }
 }
}

q  Each encountering
thread packages a
new instance of a
task (code and
data)

q  Some thread in the
team executes the
task

OpenMP on Low-Power Architecture, 2009

P
ar

al
le

l r
eg

io
n

1

Start

End

Initialization

slave thread #1

snoop for nequest

Execute
“micro_task()”

start
 msg

completion
msgs

Initialization
micro_task context

send request

Execute micro_task()

barrier

P
ar

al
le

l r
eg

io
n

2

Initialization
micro_task context

send request

Execute micro_task()

barrier

barrier

slave thread #1

snoop for nequest

Execute
“micro_task()”

barrier

slave thread #1

snoop for nequest

Execute
“micro_task()”

barrier

B. Chapman, L. Huang, E. Stotzer, E. Biscondi, A. Shrivastava, A. Gatherer. Implementing OpenMP on a High Performance
Embedded Multicore MPSoC, pp 1-8, Proc. of Workshop on Multithreaded Architectures and Applications (MTAAP'09) In
conjunction with International Parallel and Distributed Processing Symposium (IPDPS), 2009.

The OpenMP ARB 2009

n  OpenMP is maintained by the OpenMP Architecture
Review Board (the ARB), which

n  Interprets OpenMP
n  Writes new specifications - keeps OpenMP relevant
n  Works to increase the impact of OpenMP

n  Members are organizations - not individuals
q  Current members

n  Permanent: AMD, Caps Entreprise, Cray, Fujitsu, HP, IBM, Intel,
Microsoft, NEC, PGI, SGI, Sun, Texas Instruments

n  Auxiliary: ASCI, cOMPunity, EPCC, KSL, NASA, RWTH Aachen

 www.compunity.org

The OpenMP ARB 2015

n  OpenMP is maintained by the OpenMP Architecture Review
Board (the ARB), which

n  Interprets OpenMP
n  Writes new specifications - keeps OpenMP relevant
n  Works to increase the impact of OpenMP

n  Members are organizations - not individuals
q  Current members

n  Permanent: AMD, ARM, Convey, Cray, Fujitsu, HP, IBM, Intel, NEC,
Nvidia, Oracle, Red Hat, PGI, Texas Instruments

n  Auxiliary: ANL, ASC/LLNL, cOMPunity, EPCC, LANL, LBNL, NASA,
ORNL, RWTH Aachen, SNL, TACC, University of Houston

 www.openmp.org

“High-level directive-based multi-language parallelism that is
performant, productive and portable”

OpenMP: Who are the Users?

n  Small to moderately large scientific and
technical applications
q  Initially Fortran only, SMPs, SGI Origin (Altix)

n  General-purpose multicore programming
q  Tasks, C and C++ bindings

n  Entry-level parallel programmers
n  Embedded systems

q  Tasks, kernel offloads
n  Large-scale parallel computations

q  Usually in conjunction with MPI
16

n  Oct 1997 – 1.0 Fortran
n  Oct 1998 – 1.0 C/C++
n  Nov1999 – 1.1 Fortran: interpretations added
n  Nov 2000 – 2.0 Fortran (F95, nested locks)
n  Mar 2002 – 2.0 C/C++
n  May 2005 – 2.5 Fortran/C/C++ (one API, multiple bindings, memory

model, ICVs, terminology)
n  May 2008 – 3.0 (task execution model, explicit tasks, parallelization

of multiple loop levels, nested parallelism; wait policy)
n  July 2011 - 3.1 (final, mergeable tasks, taskyield, atomic construct)
n  July 2013 – 4.0 (support for devices, target and data mapping; SIMD

loops; thread affinity; task dependences; user defined reductions)

Runtime routines: 10 in 1.1; 19 in 3.0; 28 in 4.0

OpenMP Locality Research
Locations := Affinity Regions, Based on Locales, Places

q  Represent execution environment by
collection of “locations” (Chapel/X10)

q  Map data, threads to a location;
distribute data across locations

q  Align computations with data’s
location, or map them explicitly

q  Significant performance boost on mid-
size SMP systems.

Lei Huang, Haoqiang Jin, Barbara Chapman, Liqi Yi. Enabling Locality-Aware
Computations in OpenMP. Scientific Computing, Vol 18, Numbers 3-4, 169-181,
IOS Press Amsterdam, 2010

q  OpenMP 3.0: privatize data where
possible, optimize cache usage

q  “First touch” Implicit data layout

n  OpenMP Places and thread affinity policies
q  OMP_PLACES to describe hardware regions
q  affinity(spread|compact|true|false)	

n  SPREAD: spread threads evenly among the places
spread	
 8	

n  COMPACT: collocate OpenMP thread with master
thread

compact	
 4	

OpenMP 4.0 Affinity

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

chip 0

core 0

t0 t1
core 1

t2 t3
core 2

t4 t5
core 3

t6 t7

chip 1

core 4

t8 t9
core 5

t10 t11
core 6

t12 t13
core 7

t14 t15

0

10

20

30

40

50

60

70

80

90

100

128x128 256x256 512x512 1024x1024 2048x2048
Matrix size (float)

Jacobi Execution Time (s)

first version

target-data

Loop collapse using linearization with static-even scheduling

Loop collapse using 2-D mapping (16x16 block)

Loop collapse using 2-D mapping (8x32 block)

Loop collapse using linearization with round-robin scheduling

OpenMP for Accelerators

while ((k<=mits)&&(error>tol))
{
// a loop copying u[][] to uold[][] is omitted here
 …

#pragma omp parallel for private(resid,j,i) reduction(+:error)
for (i=1;i<(n-1);i++)
 for (j=1;j<(m-1);j++)
 {
 resid = (ax*(uold[i-1][j] + uold[i+1][j])\
 + ay*(uold[i][j-1] + uold[i][j+1])+ b * uold[i][j] - f[i][j])/b;
 u[i][j] = uold[i][j] - omega * resid;
 error = error + resid*resid ;
 } // rest of the code omitted ...
}

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \
 f[0:n][0:m]) map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m])

#pragma omp target device(gpu0)

20

Early Experiences With The OpenMP Accelerator Model; Chunhua Liao, Yonghong Yan, Bronis R. de Supinski,
Daniel J. Quinlan and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013, September 2013

Main
Memory

Application
data

target

Application
data

acc. cores

Copy in
remote
data

Copy out
remote data

Tasks
offloaded to
accelerator

Looking Ahead: OpenMP 4.1

n  Device construct enhancements
q  more control and flexibility in specifying data movement between host

and devices
q  asynchronous, data flow execution support with addition of nowait and

depends
q  multiple devices
q  “deep copy” for pointer-based structures/objects

n  Loop parallelism enhancements
q  extended ordered clause to support do-across (e.g. wavefront)

parallelism for loop nests
q  new taskloop construct for asynchronous loop parallelism with control

over task grain size
n  Array reductions for C and C++
n  Under consideration:

q  memory affinity
q  task priorities (very likely)

On-going work also on interoperability:
Resource management, other threads, other APIs, multiple OpenMP computations

Feature Set: Future Directions

q  Broad user base is a strength, but potential tension
between general-purpose programming and HPC
q  Sometimes seen in choice of defaults

q  Continued enhancement of expressivity of tasks
q  Data locality? Now we have

q  Places, binding of threads to places; device data placement, data
motion to/from devices, explicit data allocation

q  (Soon) asynchronous computation on host and device

q  How can we build on top of this?
q  Affinity of data with places? Affinity of tasks to places?
q  (Page-based?) Mapping / migration of data to collection of

places?
q  Modification of places? Virtualization?
q  Additional memory allocation / mapping information?

Subteams of Threads? GUI Threads?

 for (j=0; j< ProcessingNum; j++)
 #pragma omp for schedule(dynamic)
 subteam(2:omp_get_num_threads()-1)
 for (k=0; k<M; k++) {
 ProcessData(); // data processing
 } // subteam-internal barrier

Increases expressivity of single-level parallelism

Thread Subteam: subset of
threads in a team
•  Overlap computation and

communication (MPI)
•  Concurrent worksharing regions
•  Additional control of locality of

computations and data
•  Handle loops with little work

Dynamic Program Adaptation

q  Reasonably amenable to
dynamic adaptation
q  Adjustment of thread count,

schedule
q  Adaptive barriers, reduction

routines
q  Runtime decisions
q  Tasks, mergeable

q  Use of performance
interface to inform dynamic
tools
q  Can help adjust data layout,

find memory performance
problems

q  Need to develop more
runtime techniques

OpenMP Program
(object code)

Collector API

Performance Tool

executable (./a.out)

re
qu

es
t

ev
en

ts

XPRESS: OpenMP over HPX

0

2

4

6

8

10

12

14

16

18

10 10 20 40

sp
ee

du
p

Number of Threads

Sparse LU scaling

hpxMP

icc

q  ParalleX	
 execu+on	
 model:	

dynamic	
 adap+ve	
 resource	
 management;	

message-­‐driven	
 computa+on; efficient	

synchroniza+on; global	
 name	
 space; task	

scheduling	

q  OpenMP	
 transla+on	
 mostly	
 works	

No	
 direct	
 interface	
 to	
 OS	
 threads	

q  No	
 +ed	
 tasks;	
 Threadprivate	
 is	
 tricky,	
 slow	
 	

q  Doesn’t	
 support	
 Places,	
 private	
 memory	

q  OpenMP	
 task	
 dependencies	
 via	
 Futures	

q  HPX	
 locks	
 faster	
 than	
 OS	
 locks	

	

q  Very	
 interes+ng	
 for	
 “all-­‐task”	

transla+on	
 /	
 op+miza+on	

Architecture-Aware Task Translation
n  Restructure work units

q  Merging (or splitting) work units for better granularity
q  Guided by parameterized cost model

n  Application structural representation
q  Work units and dependences
q  Data distribution among places

n  Compile time approximation
q  Data mapping onto places
q  Data binding with work unit
q  Decision honored by runtime

n  But may be adapted and refined.

12

3.4 Related Work

Broadly speaking, the REX programing model is designed to address concerns and directions
expressed at the DoE 2011 Workshop on Exascale Programming Challenges [17]. The REX
programming model leverage multiple previous language e�orts, including asynchronous task
parallel models from Cilk [22], asynchronous PGAS languages such as X10 [26], [79] and
Chapel [4], and the data parallel model in OpenMP [72] and OpenACC [71] standard. It also
borrow concepts from data-flow, functional and single-assignment programming models [6], [20],
[21], [27], [68]. One of the distinguishing features of REX is its combination of these concepts with
an integration with MPI for inter-node communication. Also, REX is geared towards creating
higher-level constructs similar to the multiresolution programming model Chapel [4], but through
a creation of domain-specific languages suitable for compilation on heterogeneous platforms.

4 REX Compiler Research




























      












Fig. 6. REX Machine-Aware Compilation Environment

The extent to which a compiler is able to optimize code is highly dependent on the information
available to it about the program and its data usage, and how well it is able to speculate on the
runtime behavior. The REX compiler will make extensive use of the explicit data and parallelism
information contained in a REX program in order to perform aggressive optimizations that are
tailored to the target node architectures. The REX compiler research includes the following:

• We will design an Application Structural Representation (ASR) for REX programs. The
high-level representation of an application’s parallelism and data access patterns provided
by the ASR will be used to assist parallelism-aware compilation, pass information to the
runtime, and support interaction with both expert programmers and performance tools.

• We will perform research on machine-aware compilation and memory optimization on
di�erent architectures, including current and future architectures that are not conventional
but may influence parts of the exascale hardware roadmap.

• The REX compiler will support generation of multiple code versions for data parallel regions,
e.g. generating both CPU and GPGPU versions from a single source.

An “all task” approach

Program Development: Observations

q  Scalability greatly influenced by programming
style, code structuring and inherent suitability.

q  OpenMP is a prescriptive model
q  Coarse grain approach to parallelization best, but

might require significant rewriting of code
q  Data layout, access pattern (locality, affinity) has

always mattered for performance
q  Overheads of features understood
q  Cache effects, especially false sharing, can distort

performance
q  Tool support for creation of OpenMP code with

high locality needed

 Questions?

