The Future ot OpenMP

Barbara Chapman

University of Houston

DOE PModels Workshop,
March 2015

/=\HPC

=/ TOOoLS

http://www.cs.uh.edu/~hpctools

Agenda

Evolution of OpenMP

Who are the Users?

Recent and On-going Change
Potential Directions

OpenMP

Portable parallel programming across shared
memory architectures since 1997

o Parallel RegionS: #pragma omp parallel
OMP PARALLEL #pragma omp for schedule(dynamic)
o Worksharing: for (1=0;1<N;1++){

NEAT STUFF(I);

OMP DO, OMP SECTIONS
’ } I* implicit barrier here */

MASTER, SINGLE
o Data Environment
SHARED,PRIVATE,FIRSTPRIVATE, THREADPRIVATE

o Synchronization:
ATOMIC,CRITICAL,BARRIER,ORDERED,FLUSH

o Runtime functions/environment variables
OMP_NUM_THREADS, OMP_SCHEDULE, etc.

FEarly User Experience, 2000

Naval Research I.ab

NLOM, NCOM Ocean Models

OpenMP significantly outperformed MPI on representative
HALO benchmark

o Use OpenMP code if possible, else MPI

OpenMP and shmem versions scale close to linearly up to
112 nodes, MPI to 28 nodes, on Origin

Proposed OpenMP Extensions, 1999

SGI page-based data distribution extensions
o Allocates pages to memory across system nodes
o Preserves illusion of true shared memory

HPF-style data mappings

o Poor performance on page-based system

o SGI, Compag

“first-touch” default
mapping works pretty well
(if developer is aware of it)

1$SGI DISTRIBUTE array (CYCLIC (1))
ISOMP PARALLEL DO PRIVATE (i, active)
ISOMP& SHARED (level)
I$SGI+ AFFINITY (i) = DATA (array (i))
DOi=1, max
IF (array (i) >=1)then
active =
CALL solve (active, level, ...)
END IF
END DO

The OpenMP ARB 2002

OpenMP is maintained by the OpenMP Architecture
Review Board (the ARB), which

Interprets OpenMP

Writes new specifications - keeps OpenMP relevant

Works to increase the impact of OpenMP

Members are organizations - not individuals

Industry: Compaq, Fujitsu, HP, IBM, Intel, Intel KAI, NEC, SGl,
Sun

Other: ASCI, cOMPunity
o Researchers participate via cOMPunity from 2002 on

‘ Industrial Mixer Code, 2002

comel

R2200-C
t=1.11s

Density[kg/m3]
4.000e+02
3.677e+02
3.355e+02
3.032e+02
2.709e+02
2.386e+02
2.064e+02
1.741e+02
1.418e+02
1.095e+02
7.727e+01
4.500e+01

$%Batielle

Ingenieurtechnik GmbH

Omni Compiler: Cluster-enabled OpenMP, 2002

OpenMP for a cluster (distributed memory system)
o message passing library (MPI, PVM) provides high performance,

but difficult and cumbersome.

Use software distributed shared memory system
SCASH as underlying runtime system on cluster

o Page-based DSM

o Related Work: OpenMP compiler for TreadMarks by Rice (later clOMP)

¢ OpenMP

+ All variables are
shared as defaults.

+ No explicit shared
memory allocation

=)

Omni OpenMP Compiler

“shmem” memory model

+ All variables declared statically in
global scope are private.

¢ The shared address space must
be allocated by a library function at
runtime.

¢+ Example: SCASH, Unix
“shmem” system call

Task Translation to Reduce Synchronization

Difficult to explicitly express
computations as task graph

Compiler translates
“standard” OpenMP into
collection of work units qj A
(tasks) and task graph

Analyzes data usage per

work unit to reduce [-‘L][AL] i

synchronization
Trade-off between load
balance, co-mapping of work I O™

units that use same data
What is “right” size of work
unit?

o Might need to adjust at run time

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002

Cart3D OpenMP Scaling, ca. 2005

4.7 M cell mesh Space Shuttle Launch Vehicle example

256 4 512
Bl MPI timing
[OpenMP timing
A-A MPI speedup

128 -

o
;3/ *-% OpenMP speedup - 256
o 64
0
(@]
Q

3 32 - 128 3
g Altix 3700BX2]
o 16)
2 + 64
(0]
E °
—

4 |:|ﬂ: §

2

32 64 128 256 474
Number of CPUs

= OpenMP version uses same domain decomposition strategy as MPI for
data locality, avoiding false sharing and fine-grained remote data access

OpenMP version slightly outperforms MPI version on SGI Altix 3700BX2,
both close to linear scaling.

OpenMP Targets, 1997 - 2005

Initial 1997 release for scientific applications
o Tailored to array-based computations in Fortran
o Main market is small SMP workstation or PC

o C version increased range of SMP-parallel codes

Provided by vendors on ccNUMA platforms
o SGIl and Compaq, with extensions

Multicore systems, ca. 2005

o General-purpose multicore programming
o Tasks, C and C++ bindings support this

o Growing compiler support (including ISVs)

OpenMP 3.0 Introduces Tasks, 2008

Tasks explicitly created and processed

o Each encountering
thread packages a
new instance of a
task (code and
data)

o Some thread in the
team executes the
task

#pragma omp parallel
{
#pragma omp single

{
p = listhead ;
while (p) {
#pragma omp task
process (p)
p=next (p) ;
}

}
}

OpenMP on Low-Power Architecture, 2009

Multicore Navigator

Initialization

Initialization
micro_task context

= slave thread #1 slave thread #1 slave thread #1
Memory system ' ‘ : T
i’ i’

Multicore memory
DDR3 controller %
-64b Shared memory 4 MB = !

snoop for nequest |-

snoop for nequest |- snoop for nequest |-t

GigE switch
Peripherals and 1/0

)

A J Y A J
Execute
“micro_task()”

Execute
“micro_task()”

Execute
“micro_task()”

Hyperlink

A J A J A J

barrier »» barrier % barrier ’»

Parallel region 2

completion
msgs

B. Chapman, L. Huang, E. Stotzer, E. Biscondi, A. Shrivastava, A. Gatherer. Implementing OpenMP on a High Performance

Embedded Multicore MPSoC, pp 1-8, Proc. of Workshop on Multithreaded Architectures and Applications (MTAAP'09) In
conjunction with International Parallel and Distributed Processing Symposium (IPDPS), 2009.

The OpenMP ARB 2009

OpenMP is maintained by the OpenMP Architecture
Review Board (the ARB), which
Interprets OpenMP

Writes new specifications - keeps OpenMP relevant
Works to increase the impact of OpenMP

Members are organizations - not individuals

o Current members

Permanent: AMD, Caps Entreprise, Cray, Fujitsu, HP, IBM, Intel,
Microsoft, NEC, PGI, SGI, Sun, Texas Instruments

Auxiliary: ASCI, cOMPunity, EPCC, KSL, NASA, RWTH Aachen

The OpenMP ARB 2015 www.openmp.org
OpenMP

OpenMP is maintained by the OpenMP Architecture Review
Board (the ARB), which
Interprets OpenMP

Writes new specifications - keeps OpenMP relevant
Works to increase the impact of OpenMP

Members are organizations - not individuals

o Current members

Permanent. AMD, ARM, Convey, Cray, Fujitsu, HP, IBM, Intel, NEC,
Nvidia, Oracle, Red Hat, PGI, Texas Instruments

Auxiliary: ANL, ASC/LLNL, cOMPunity, EPCC, LANL, LBNL, NASA,
ORNL, RWTH Aachen, SNL, TACC, University of Houston

“High-level directive-based multi-language parallelism that is
performant, productive and portable”

OpenMP: Who are the Users?

Small to moderately large scientific and
technical applications

o Initially Fortran only, SMPs, SGI Origin (Altix)

General-purpose multicore programming
o Tasks, C and C++ bindings

Entry-level parallel programmers

Embedded systems

o Tasks, kernel offloads

Large-scale parallel computations
o Usually in conjunction with MPI

16

OpenMP Wy oo

Oct 1997 — 1.0 Fortran

Oct 1998 — 1.0 C/C++ @) Sl
Nov1999 — 1.1 Fortran: interpretations added

Nov 2000 — 2.0 Fortran (F95, nested locks)

Mar 2002 — 2.0 C/C++

May 2005 — 2.5 Fortran/C/C++ (one API, multiple bindings, memory
model, ICVs, terminology)

May 2008 — 3.0 (task execution model, explicit tasks, parallelization
of multiple loop levels, nested parallelism; wait policy)

July 2011 - 3.1 (final, mergeable tasks, taskyield, atomic construct)

July 2013 — 4.0 (support for devices, target and data mapping; SIMD
loops; thread affinity; task dependences; user defined reductions)

Runtime routines: 10in1.1; 191in 3.0; 28 in 4.0

OpenMP Locality Research

Locations := Affinity Regions, Based on Locales, Places

o OpenMP 3.0: privatize data where
possible, optimize cache usage

o “First touch” Implicit data layout

Data | Affinity to location #I Affinity to location #2

OpenMP
Threads

OpenMP
Threads

o Represent execution environment by
collection of “locations” (Chapel/X10)

Location #l| Location #2]

o Map data, threads to a location;

\)\) distribute data across locations
| | — o Align computations with data’s

location, or map them explicitly

o Significant performance boost on mid-
size SMP systems.
Lei Huang, Haogiang Jin, Barbara Chapman, Liqi Yi. Enabling Locality-Aware

Computations in OpenMP. Scientific Computing, Vol 18, Numbers 3-4, 169-181,
IOS Press Amsterdam, 2010

OpenMP 4.0 Af

OpenMP Places and t

1nity

lo N
cnip U

la: 4
cnip—1

core 0

core 1

core 2

core 3

core 4

core 5

core 6

core /

o OMP_PLACES to describe hardware regions
o affinity(spread|compact|true|false)

SPREAD: spread t

nread affinity policies

spread 8
R e R

o8

pS

0000

po6

p7

0000

0000

COMPACT: col
0000]000010000]/0000
compact 4

nreads evenly among the places

ocate OpenMP thread with master

‘ OpenMP for Accelerators

target
#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \ Cdp:
f[0:n][0:m]) map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m]) —
while ((k<=mits)&&(error>tol)) o
{ Task -
I/ a loop copying uf][] to uold([][] is omitted here grosceaty |~
#pragma omp target device(gpu0)
#pragma omp parallel for private(resid,j,i) reduction(+:error)” | s [
for (i=1;i<(n-1);i++) N
for =1<(m-1)j++ | ——]
{ 6o Loop collapse using 2-D mapping (8x32 block)
reSId — (ax*(uold[l_']]l]] + uold[H.']]l]])\ 50 LoopcollapseusingIinearizalionwithround—robinsched}iﬁg //
+ ay*(uold]i][j-1] + uold[i][j+1])+ b * uold[i][j] - flilLi1)/b; . / /
ufi][j] = uold[i][j] - omega * resid; " /'
error = error + resid*resid ; 10 .’/ — =
} // rest Of the COde omitted e 0 128x128 ‘ 256x256 ‘ 512x512 ‘ 1024x1024 ‘ 2048x2048

Matrix size (float)

}

Early Experiences With The OpenMP Accelerator Model; Chunhua Liao, Yonghong Yan, Bronis R. de Supinski,
Daniel J. Quinlan and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013, September 2013

20

Looking Ahead: OpenMP 4.1

Device construct enhancements

o more control and flexibility in specifying data movement between host
and devices

o asynchronous, data flow execution support with addition of nowait and
depends

o multiple devices
o “deep copy” for pointer-based structures/objects

Loop parallelism enhancements

o extended ordered clause to support do-across (e.g. wavefront)
parallelism for loop nests

o new taskloop construct for asynchronous loop parallelism with control
over task grain size

Array reductions for C and C++

Under consideration:
o memory affinity
o task priorities (very likely)

On-going work also on interoperability:
Resource management, other threads, other APls, multiple OpenMP computations

Feature Set: Future Directions

Broad user base is a strength, but potential tension
between general-purpose programming and HPC

o Sometimes seen in choice of defaults
Continued enhancement of expressivity of tasks

Data locality? Now we have

o Places, binding of threads to places; device data placement, data
motion to/from devices, explicit data allocation

o (Soon) asynchronous computation on host and device

How can we build on top of this?
o Affinity of data with places? Affinity of tasks to places?

o (Page-based?) Mapping / migration of data to collection of
places?

o Modification of places? Virtualization?
o Additional memory allocation / mapping information?

‘ Subteams of Threads? GUI Threads?

Thread Subteam: subset of

threads in a team

« Overlap computation and
communication (MPI)

« Concurrent worksharing regions

« Additional control of locality of
computations and data

« Handle loops with little work

; Intra-team

]
"
"
g <
’ L4
’

’ harrier
’ B S I' Global T T T T T T T T T
e 5> /L =2 bisttiet 512 - BT.MZ Class B [Nested OpenMP
Thread Threads Thread Thread @ Subt
subteam 1 subteam 2 subteam 3 256 ubteam _
198 B MP1+OpenMP
for (j=0; j< ProcessingNum; j++) 3 64
#pragma omp for schedule(dynamic) g 32
subteam(2:omp_get_num_threads()-1) =6
for (k=0; k<M; k++) { 8
ProcessData(); // data processing 4
} /| subteam-internal barrier 2

1 2 4 8 16 32 64
Number of CPUs

Increases expressivity of single-level parallelism

‘ Dynamic Program Adaptation

o Reasonably amenable to
dynamic adaptation

o Adjustment of thread count, OpenMP Runtime
schedule OpenMP Program Library
o Adaptive barriers, reduction
routines B
o Runtime decisions ‘1’
o Tasks, mergeable
0 Use Of performance executable (./a.out)

interface to inform dynamic
tools

o Can help adjust data layout,
find memory performance v

problems Performance Tool

2 Need to develop more
runtime techniques

request
events

XPRESS: OpenMP over HPX

ParalleX execution model:
dynamic adaptive resource management; 1s Sparse LU scaling
message-driven computation; efficient |

synchronization; global name space; task
scheduling

OpenMP translation mostly works

No direct interface to OS threads
No tied tasks; Threadprivate is tricky, slow 8
Doesn’t support Places, private memory 5
OpenMP task dependencies via Futures
HPX locks faster than OS locks

14

Very interesting for “all-task” 0 Nupper of Thigads
translation / optimization

Architecture-Aware Task Translation

Restructure work units

o Merging (or splitting) work units for better granularity
o Guided by parameterized cost model

Application structural representation

2 Work units and dependences

o Data distribution among places [roxparalel Appicarons |
. . . . ’ High-Level Code Restructuring ‘

Complle time apprOX|mat|on | 1
o Data mapping onto places @%ﬁ 1 1\
o Data binding with work unit ~ [ana _ﬁﬁ Tk Graohparsionandvarne_| | I
o Decision honored by runtime P

But may be adapted and refined. Loy

{

l REX Runtime System ‘

An “all task” approach

Program Development: Observations

Scalabili;?/ greatly influenced by programming
style, code structuring and inherent suitabillity.

OpenMP is a prescriptive model

o Coarse grain approach to parallelization best, but
might require significant rewriting of code

o Data layout, access pattern (locality, affinity) has
always mattered for performance

o Overheads of features understood
o Cache effects, especially false sharing, can distort
performance

Tool support for creation of OpenMP code with
high locality needed

