
2	 This article has been peer-reviewed.� Computing in Science & Engineering

E x a s c a l e 
C o m p u t i n g

Programming for  
Exascale Computers
Exascale systems present programmers with many challenges. A review of appropriate 
parallel programming models offers both insight into the feasibility of using existing 
systems, thus preserving the investment in legacy applications, as well as a way to compare 
the benefits and likelihood of new programming models and systems.

Scaling up applications to exascale will re-
quire significant programming efforts, 
even if current programming models prove 
adequate: programs will need to control 

billions of threads running on cores with different 
architectures; good power management will be 
essential; applications will need to use less com-
munication and memory relative to the amount 
of computing; failures will be more frequent and 
possibly include silent errors; and power manage-
ment and error handling will cause different parts 
of the system to run at different speeds.

We discuss in this article parallel program-
ming models and their ability to handle these 
challenges. We focus on programming models as 
distinct from programming systems: a parallel pro-
gramming model provides “a set of abstractions 
that simplify and structure the way the program-
mer thinks about and expresses a parallel algo-
rithm,”1 whereas a programming system is an 
implementation of one or more models. Thus, 
message passing is a programming model; the 
message passing interface (MPI)2 is a program-
ming system that supports that model as well as 

other models, such as remote direct memory ac-
cess (RDMA).

A good programming model needs a per-
formance model to estimate performance as a 
function of input and platform parameters. The 
performance model is approximate and has no 
formal definition, but it’s essential: without such a 
model, the programmer has no insight into a pro-
gram’s likely performance. A good programming 
model for performance computing should expose 
to the programmer those resources that have a 
significant impact on performance and that can 
be controlled by software; it should hide details 
that have a secondary impact, aren’t under soft-
ware control, or can be managed well by compiler 
and runtime.

A “machine-level” parallel computing model 
exposes the hardware in as direct a manner as pos-
sible: a program executes on a platform consist-
ing of a fixed number of nodes, each with a fixed 
number of physical threads and memory. The 
model specifies the communication mechanisms 
between threads—either shared variables within a 
node or message passing across nodes. A program 
then specifies the instruction sequence that each 
physical thread executes. MPI+OpenMP supports 
this model: each node becomes an MPI process 
that executes an OpenMP program that uses ex-
actly one work-sharing construct (parallel loop 
or section) to start an execution on each thread. 
The OpenMP program uses a fixed number of 
threads and affinity scheduling to have a fixed as-
sociation of logical threads to cores. Typically, you 

1521-9615/13/$31.00 © 2013 IEEE

Copublished by the IEEE CS and the AIP

William Gropp
University of Illinois at Urbana-Champaign
Marc Snir
Argonne National Laboratory

CISE-15-6-Gropp.indd   2 25/11/13   8:41 PM



November/December 2013 � 3

don’t use all physical threads so that system code 
can execute on separate resources. Also, it’s often 
preferable to split a physical node into several MPI 
processes.

Higher-level programming models virtualize 
resources and use a runtime layer to map “virtual” 
entities (such as threads or variables) to physical 
entities (cores or memory locations). This is done 
to facilitate programming and portability. The 
use of higher-level programming abstractions will 
also encourage or mandate the use of restrictive 
programming patterns that reduce the likelihood 
of errors or facilitate virtualization. In this article, 
we’ll cover the design choices made by several 
proposed exascale computing models.

Design Choices
A high-performance parallel programming mod-
el involves several design choices beyond those 
found in a sequential programming model. We 
discuss five of the most important considerations 
here.

Scheduling
The mapping between logical execution threads 
and physical threads can be dynamic and man-
aged at runtime. In such a case, the program-
ming model can accommodate a varying number 
of logical threads and operations that spawn new 
threads or wait for their completion. How these 
threads are scheduled to run and whether they 
can move to different core or nodes can signifi-
cantly impact performance. Some models, such 
as Thread Building Blocks (TBB),3 make a single 
scheduling decision when the thread is created. 
Others, such as OpenMP (for shared memory)4 
or Charm++ (for distributed memory)5 support 
thread migration at specific points in the thread 
execution (this is usually called load balancing).

Hybrid models are also possible—logical 
threads are statically allocated to nodes but 
dynamically allocated to cores within nodes. 
MPI+OpenMP supports this type of model.

Communication
On current machines, communication between 
cache and memory, across caches within nodes, 
and across nodes takes significantly more time 
than computation. Communication between 
caches and memory is a side effect of loads and 
stores. A simplified performance model will as-
sume that access to memory is as fast as access to 
the L1 cache. Programmers ensure this approxi-
mation is valid by writing code with good tempo-
ral, spatial, and thread locality.

But not all algorithms can be expressed with 
good locality. Furthermore, the cost of associa-
tive caches (in silicon and energy) can lead to their 
partial or complete replacement in future systems 
by explicitly addressable scratchpads. In addition, 
it might be difficult to support cache coherence 
on nodes with hundreds of cores. Therefore, 
core-to-memory communication and core-to-
core communication are likely to become more 
software controlled and possibly exposed to the 
user. Although compilers can easily generate ex-
plicit data move commands from code with loads 
and stores, they have a hard time optimizing these 
moves—for example, by aggregating or execut-
ing them collectively. In these cases, the cost of 
shared-memory communication has to be part of 
the performance model.

Communication can be one-sided, effected by 
software running in one location—for example, 
reads and writes to local memory or get and put 
operations on remote memory. It can also be two-
sided, with software running at both locations 
involved—for example, send/receive message 
passing operations. Alternatively, it can be collec-
tive, with a group of locations jointly involved; 
such operations can be implemented efficiently in 
hardware but will perform poorly when faced with 
jitter (variations in execution speed due to back-
ground system activities or other causes).

Various performance models for internode 
communication follow the postal model (commu-
nication of m bytes takes time a + bm) or, occa-
sionally, the more complex LogP model.6

Synchronization
Two-sided communication synchronizes the 
involved parties. One-sided communication 
doesn’t synchronize, so separate synchronization 
is required to enforce data dependencies. Both 
shared- and distributed-memory systems support 
synchronizing operations.

Most shared-memory synchronization opera-
tions, such as locks or atomic sections, are sym-
metric, mutual-exclusion constructs: they ensure 
that different threads won’t execute operations or 
instruction blocks concurrently, but they don’t 
specify the order in which the threads will execute. 
Distributed-memory synchronization operations, 
such as two-sided or barrier communication, are 
asymmetric constructs. The use of ordering syn-
chronization constructs can eliminate nondeter-
minism and thus facilitate debugging.

A simple synchronization model is the bulk-
synchronous parallel (BSP) model, in which the 
number of threads is fixed and all threads execute 

CISE-15-6-Gropp.indd   3 25/11/13   8:41 PM



4� Computing in Science & Engineering

in synchronized phases so that remote data con-
sumed at phase i by a thread is produced by an-
other thread at phase j < i.7 A bulk-synchronous 
execution is easy to understand, with producer-
consumer relations synchronized by a global 
clock. This model is supported in MPI if all com-
munications are collective or if barriers define the 
phases; any sends executed at phase i are matched 
by the receives that complete at the end of phase i 
or at a later phase.

This model can be extended (while still pre-
serving its conceptual simplicity) to a nested bulk-
synchronous model, which splits threads into teams 
that execute under the BSP model.8 MPI com-
municators can help implement this model. This 
model is also supported by suitably restricted 
OpenMP programs.

Data Distribution
Communication costs depend on the data’s 
“home”: where it’s stored when it isn’t actively 
used. Most distributed programming models 
provide user control on the data home. In an 
object-oriented system such as Charm++, data is 
encapsulated in objects along with methods; the 
objects’ location determines both where the data 
are stored and where the methods are executed. 
The same fixed association between storage loca-
tion and loci of execution occurs in message pass-
ing models and partitioned global address space 
(PGAS) languages.

Communication costs will depend both on 
proper collocation of data and the operations on 
it. A data-centric view (data parallelism) focuses 
on data distribution and matches computation to 
it. A control-centric view (task or control paral-
lelism) focuses on control distribution and moves 
data to where it’s needed. Most current program-
ming models encourage a data-centric view for 
distributed memory and a control-centric view for 
shared memory. Recent research tries to provide 
a more symmetric view by facilitating both data 
and control migration. Regardless of whether you 
move data to control or control to data, you still 
have communication that’s inherent to the paral-
lel algorithm: data needs to move to data.

Global View versus Local View
In a system with a local view of control, each phys-
ical thread executes its own (sequential) program. 
The programs are identical in a single program, 
multiple data (SPMD) model; they differ in a mul-
tiple programs, multiple data (MPMD) model. 
The multiple executions interact through com-
munication and synchronization operations.

With a global view of control, one program uses 
parallel control statements (such as a parallel loop) 
or parallel data operations (such as a vector opera-
tion) to specify activities that can happen concur-
rently on multiple physical threads. The single 
instruction, multiple data (SIMD) model achieves 
parallelism with sequential control and parallel 
data operations.

Similarly, you can have a local view of data, in 
which each thread has its own local data struc-
tures, or a global view of data that aggregates data 
structures such as arrays to span multiple nodes; 
a data distribution function specifies which part 
of the array is stored where. In the first case, a re-
mote array location is accessed by using a different 
syntax from a local one (for example, a(index) 
and a(index)[numproc], in Fortran). In the 
latter case, the same expression—a[index] in 
Unified Parallel C (UPC)—can refer to a local or 
a remote location, depending on the distribution 
of array a.

Evolutionary Approach
Can we program exascale systems with our cur-
rent approaches? Can the evolution of current 
approaches provide adequate support for exascale 
systems? To answer these questions, we need to 
look more closely at current programming models 
and their likely extensions.

Current Systems
Today’s programming models for parallel com-
puting cover a wide range of approaches; Table 1 
summarizes the major ones.9–20 These examples 
show that one programming system, such as MPI, 
can support multiple programming models. In 
some cases, multiple programming systems can 
be used together, the most common being MPI 
and OpenMP.

Single System
Because an exascale system is likely to have dis-
tributed-memory hardware, one of the most 
natural programming systems is MPI, which is 
currently used on more than 1 million cores with 
exceptional scalability. It’s therefore reasonable 
to ask whether MPI can be used on an exascale 
system. This question raises the following issues, 
which aren’t necessarily valid problems:

•	 The amount of message buffer space doesn’t 
grow as O(P) if properly implemented.21 For 
many applications, it only grows as O(log(P)).

•	Other MPI internal memory, such as the de-
scription of MPI communicators, also doesn’t 

CISE-15-6-Gropp.indd   4 25/11/13   8:41 PM



November/December 2013 � 5

need to scale as O(P). It’s possible to trade a lit-
tle bit of time for memory space.22 Depending 
on the application’s needs, the overhead can be 
as little as O(1).

•	 The time to start MPI processes need not be 
linear in the number of processes; scalable 
startup systems already exist.23

•	 The BSP model might not work well on an ex-
ascale machine because of the extreme concur-
rency and asynchrony. Even if this is true, MPI 
supports other models.

•	General all-to-all communication doesn’t scale 
well, irrespective of MPI, and an algorithm that 
frequently uses such communication isn’t scal-
able. MPI introduced “neighbor” collectives to 
support sparse “all-to-some” communication 
patterns that are scalable.2

The “MPI everywhere” approach does face 
several challenges:

•	 The MPI process model encourages program-
mers to make local copies of data to improve 
performance. Because exascale systems are like-
ly to have relatively small amounts of memory 
per core, applications must be very memory ef-
ficient. One possible solution for MPI programs 
is to use the direct access to shared memory in-
troduced in MPI-3.2

•	 Although MPI provides enough support for pro-
grammers to implement efficient, scalable code 
even in the presence of performance uncertainty, 
it’s a low-level system that relies on the program-
mer to use it well. In addition, as a library, an 
MPI implementation has some extra overhead.

Although these challenges aren’t insurmount-
able, they might require significant effort both in 

building a scalable MPI implementation and in 
using MPI in a scalable way.

Several other candidates have been suggested 
for a one-system-everywhere approach. OpenMP 
can be extended to distributed-memory systems, 
for example, but distributed-memory implemen-
tations of shared-memory systems don’t normally 
achieve acceptable performance.24 PGAS systems 
such as UPC and Fortran could be implemented 
for an exascale system and are discussed later, but 
these approaches also have problems. Some opera-
tions are hard to scale, and descriptions are enu-
merated in nonscalable ways. In addition, these 
approaches have found limited success in practice, 
with few major codes using them, perhaps because 
performance requires attention to locality similar 
to what MPI requires.

Shared-Memory Programming
The programming system most often used for 
shared-memory parallelism in scientific codes 
is OpenMP. But scaling it to hundreds of cores 
will require changes both in programming style 
and in the language itself. OpenMP provides a 
pure control parallel model, but no mechanisms 
for controlling data distribution. Therefore, 
OpenMP codes can’t be mapped efficiently to a 
nonuniform memory architecture (NUMA) sys-
tem. OpenMP provides many nonscalable syn-
chronization constructs (locks, atomic sections, 
and sequential sections) and tends to encourage 
fine-grained synchronization. Therefore, many 
OpenMP programs are written in a style that im-
pedes scaling. Various proposals have been made 
for extending the OpenMP language and for new 
compiler and runtime techniques that can allevi-
ate these problem. Some of these changes were 
made in OpenMP v4.0—in particular, support 

Table 1. Programming models and the systems that implement them.

Programming model Example programming systems

Shared memory
Dynamic scheduling, nested bulk synchronous
Dynamic scheduling, general synchronization

OpenMP,4 TBB,3 Cilk++9

Pthreads10 OpenMP, TBB, Cilk++

Distributed memory
Bulk synchronous
Static scheduling, two-sided communication
Static scheduling, one-sided communication
Hybrid scheduling (static across nodes, dynamic within nodes)

BSP,11 MPI with collectives/barriers, X10 with clocks12

MPI point-to-point
MPI RDMA, SHMEM,13 UPC,14 Fortran15 MPI+OpenMP

Local view of data and control
Local view of control, global view of data
Global view of data and control

MPI, Fortran
UPC, Global Arrays16

OpenMP, Chapel17

Coprocessor/accelerator separate memory OpenMP

Domain-specific languages and libraries PETSc,18 Liszt,19 TCE20

CISE-15-6-Gropp.indd   5 25/11/13   8:41 PM



6� Computing in Science & Engineering

for thread affinity—but evidence is lacking that 
OpenMP will scale to hundreds of cores.

A possible alternative is to use a PGAS system 
as a shared-memory programming language. 
However, such systems, as currently designed and 
implemented, don’t provide good support for load 
balancing.

Hybrid Systems
Scalability issues can be eased by using a hybrid 
system, the easiest one being a system that follows 
the hardware architecture: MPI is used for inter-
node parallelism and some other shared-memory 
programming model for intranode parallelism. 
This model is often referred to as MPI+X, and it 
exploits the fact that MPI is designed to be com-
patible with threading. Such a model reduces the 
pressure to scale either MPI or OpenMP, reduces 
memory pressure as less data are replicated within 
each node, and can better utilize shared memory.

The biggest problem when mixing program-
ming systems is that they compete for resources, 
such as threads (for runtime progress), as well as 
for bandwidth (including accessing memory via 
the internode interconnect). Although some ef-
forts have considered this problem,25 much re-
mains to be done.

New Programming Models
Fortunately, help is on the way, and new program-
ming models for high-performance computing 
have emerged in recent years.

One-Sided Communication  
and PGAS Languages
Modern communication hardware increasingly 
supports RDMA to reduce the amount of copying 
that happens during communication and to reduce 
communication software overhead. One-sided 
communication supports the PGAS programming 
model well. In this model, data can be either pri-
vate (accessed only locally) or shared, with access 
to private data somewhat faster than that to shared 
local data and access to local data much faster than 
access to remote data that requires RDMA.

The PGAS model can be supported by a library 
such as MPI, Shared Memory (SHMEM),13 or 
Global Arrays (GA)16 or by a language such as 
UPC14 or Fortran (specifically, the co-array fea-
tures added to Fortran 2008).15 In the former case, 
remote accesses are explicitly done via function 
calls, whereas in the latter, they’re implicit: the 
language distinguishes, by type, private variables 
from shared variables and may distinguish, by 
syntax, local references from remote references.

PGAS systems differ in the way the global 
name space is organized. Some, such as SHMEM 
or Fortran, provide a local view of data; others 
provide a global view. UPC and X1012 support 
one-dimensional block-cyclic array distributions, 
whereas GA supports multidimensional distribu-
tions, with blocks of equal or distinct sizes. The 
Chapel language17 supports shared maps (with 
dense or sparse index sets) and arbitrary, user-
defined distributions. 

PGAS systems also differ in their control 
structures. Most (MPI, UPC, and X10) provide 
a local view of control. UPC provides a collective 
forall statement that switches to a global view of 
control; Chapel emphasizes that global view. MPI 
and UPC also support a static scheduling model 
with a fixed number of threads, whereas X10 and 
Chapel support dynamic scheduling. In X10, tasks 
can be migrated from one process to another or 
spawned asynchronously on another process. In 
Chapel, the user can control the location where a 
statement is executed, to collocate that execution 
with a datum or a locale.

Discussion
A global view of data or of control facilitates the 
porting of sequential code: loops are replaced 
with parallel loops, and arrays are distributed. 
However, it can also lead to inefficient program-
ming patterns: because data location isn’t salient, 
it’s easy to write code with excessive accesses to 
remote data. Moreover, it isn’t always possible 
to distinguish at compile time local accesses to 
shared data from remote accesses, resulting in 
additional runtime overhead for shared-data ac-
cesses. Global control encourages a program-
ming style in which each synchronization joins 
all threads and then forks control again, resulting 
in unnecessary overheads.

Caching is essential to achieving performance 
in (hardware-supported) shared memory. It’s 
most effective when the stream of memory ref-
erences have good temporal and spatial locality. 
PGAS implementations use local memory as a 
cache to remote memory data; caching is handled 
via runtime. Unfortunately, it’s too expensive to 
run a global coherence protocol and too hard for 
the compiler to analyze when a cached value be-
comes invalid. Therefore, the local buffered copy 
is often used only once, even if the code has good 
temporal locality. Fixed line sizes don’t work ef-
fectively for internode communication, and com-
pilers often fail to aggregate multiple remote word 
accesses into larger messages. To achieve good 
temporal and spatial locality, programmers often 

CISE-15-6-Gropp.indd   6 25/11/13   8:41 PM



November/December 2013 � 7

have to explicitly copy data, losing much of the 
convenience that PGAS languages have compared 
to one-sided libraries.26

Future Requirements
PGAS languages are still evolving; new fea-
tures will be needed before they’re ready for use 
at extreme scale.

Support for teams. Multiphysics codes often consist 
of multiple modules, each running on a disjoint 
set of processes; the modules can run concurrent-
ly (on disjoint nodes) or sequentially (on the same 
nodes). MPI provides communicators to support 
such codes; similar team facilities have been dis-
cussed for PGAS languages.27

Multitasking and message-driven execution. Con-
current or simultaneous multithreading can be 
used to avoid idle time when cache misses occur: 
if a thread is blocked and waiting for a memory 
access, then another thread can use the CPU. In 
addition, cache prefetching can help avoid cache 
misses; hardware can generate prefetches for con-
tiguous strided accesses, and a compiler can insert 
them for irregular accesses.

Similar techniques are needed to hide internode 
communication latency. Nonblocking communi-
cation—for example, nonblocking gets—is the 
equivalent of cache prefetching, but due to the 
much higher latencies, it’s unlikely that prefetches 
could be compiler-generated. Something more 
convenient and effective is to run more threads 
than cores and then schedule those threads dy-
namically, either with nonblocking threads ac-
tivated when their input message arrives and 
terminated when they generate an output mes-
sage5,28 or with longer-lived threads that block 
when they execute a blocking internode commu-
nication and reschedule after the communication 
is complete.29 The Dynamic Exascale Global Ad-
dress Space (DEGAS) project studies languages 
that combine PGAS and multitasking.30

Execution time and communication time will 
exhibit higher variances on exascale systems be-
cause of the larger levels of parallelism, varying 
execution speed due to power management and 
fault handling, and irregularities in the codes 
themselves. Multitasking increases our ability 
to cope with the increased variance.

Virtualization. While PGAS languages typically 
map locales to fixed physical locations, there’s 
no inherent reason why this mapping couldn’t 
change during execution. The Charm++ system 

periodically redistributes “chares” across nodes to 
improve load balance. Data and computation mi-
gration can be done transparently via runtime or 
under user control.

Hierarchical design. PGAS+multitasking provides 
a two-level programming model analogous to 
MPI+OpenMP. As system size increases, storage 
and communication hierarchies become deeper. 
It’s widely believed that exascale systems will 
require support for hierarchical programming 
models with more than two levels: at higher levels 
of the hierarchy, load balancing actions become 
rarer, and communications are expected to be less 
frequent. The Hierarchically Tiled Array project 
provides an example of a programming model or-
ganized around a hierarchical data structure.31

Domain-Specific Environments
A domain-specific language (DSL) is “a program-
ming language or executable specification lan-
guage that offers, through appropriate notations 
and abstractions, expressive power focused on, 
and usually restricted to, a particular problem do-
main.”32 DSLs are usually supported by source-
to-source compilers that translate the DSL 
notation into code written in a conventional lan-
guage that uses domain-specific libraries. DSLs 
can facilitate code development, maintenance, 
and porting at the expense of the effort needed 
to develop the DSL and the programming tools 
required to use it effectively. DSLs are thus most 
effective when they serve a narrow domain with 
a large user community: the effort in the DSL’s 
development DSL and its environment are amor-
tized against the larger community gains. As an 
example, we wrote this article in LaTeX, a DSL 
for generating documents: it’s a narrow applica-
tion with many users that also emphasizes that 
the meaning of “domain” usually isn’t a specific 
science domain (rather, it’s a mathematical or al-
gorithmic domain). For example, Matlab can be 
viewed as a DSL for the domain of linear algebra. 
While often motivated by a particular science do-
main, many DSLs implement some combination 
of data structures and operations on those data 
structures and derive their advantages by being 
specialized to certain operations.

DSLs for various scientific computing domains 
that generate parallel code have been a subject of 
research for several decades.19,20,33–35 Two obvi-
ous obstacles to their broader use is that the com-
munity of scientific HPC programmers is small 
and the performance of DSL-generated code 
isn’t always competitive with the performance of 

CISE-15-6-Gropp.indd   7 25/11/13   8:41 PM



8� Computing in Science & Engineering

hand-tuned code. This first obstacle can be allevi-
ated by developing technologies that facilitate the 
development of new DSLs,36 and the second by 
using autotuning.37

Although DSLs are considered to be distinct 
from libraries and frameworks, that distinction 
is shrinking. A library such as PETSc18 is in ef-
fect an embedded DSL, a host language extended 
with domain-specific constructs. The domain-
specific knowledge can be built into a source-to-
source translator that optimizes code using these 
extensions.38

We expect DSLs to be part of the solution for 
exascale programming, but they don’t replace 
general-purpose parallel programming environ-
ments—indeed, they depend on them. Further-
more, DSLs are more effective when they’re more 
specialized; they’re unlikely to cover the entire 
range of HPC applications.

DSLs and libraries are particular examples of 
“multilevel programming”: the application scien-
tist programs in a notation that’s meaningful to 
her, while the performance programmer imple-
ments the libraries programs at a level that’s closer 
to the hardware. Mechanisms and tools that facili-
tate such a division of labor are a subject of inten-
sive research.39,40

W e’ve discussed approaches that 
could alleviate the concerns of 
scalability, low memory, and 
high communication costs on 

exascale systems. We haven’t yet covered hetero-
geneity, power management, and resilience. The 
reason for these omissions is that it isn’t obvious 
that new programming models will be needed to 
handle these issues.

We expect that one system will be used to pro-
gram shared-memory nodes and handle the het-
erogeneities of core and memory architecture 
with significant compiler help. Version 4 of the 
OpenMP standard4 provides extensions allow-
ing users to specify which code will be offloaded 
to accelerators, and controlling the movement of 
data across address spaces.

Programming for low energy use is mostly 
synonymous with reducing communication, 
which requires explicit user control of commu-
nication. Load-balancing runtimes can help limit 
temperature and reduce energy consumption.41 
Much uncertainty exists about programming 
model requirements for resilience. It’s possible—
especially if silent errors can be avoided—that no 
new features will be needed,42 but a minimum 

requirement will be for failures that occur fre-
quently to generate well-defined exceptions and 
leave the application in a well-defined state.

We’ve made little progress in the past few de-
cades toward the “Holy Grail” of one simple 
model that can be used to program at any scale. 
Perhaps this goal is neither feasible nor practical. 
Nevertheless, we’ve slowly improved program-
ming models and programming methodologies 
for HPC, and the quest for better programming 
models must continue.

There’s still a lot of uncertainty about the mod-
els that will be used at exascale, but there’s defi-
nitely certainty about the needed requirements: 
large number of threads, reduced communica-
tion and synchronization, tolerance for variance 
in execution time, and so on. New codes, even if 
written with current programming models, must 
be written to satisfy these requirements, so that 
future ports don’t require algorithm changes. 
This is particularly important for newly written 
OpenMP code, as it’s natural to write such code 
without regard to locality and with fine-grain 
synchronization. Good programming practices 
are more important than good programming 
models.�

Acknowledgments
This work was supported by the US Department 
of Energy, Office of Science, Advanced Scientific 
Computing Research, under contract DE-AC02-
06CH11357 and under award DESC0004131. We 
thank Gail Pieper for her careful review of this article.

References
1.	 M.C. Rinard, D.J. Scales, and M.S. Lam, “Jade: A 

High-Level, Machine-Independent Language for 

Parallel Programming,” Computer, vol. 26, no. 6, 

1993, pp. 28–38.

2.	 MPI: A Message-Passing Interface Standard Version 3.0, 

Message Passing Interface Forum, 2012; www. 

mpiforum.org/docs/mpi3.0/ mpi30-report.pdf.

3.	 J. Reinders, Intel Threading Building Blocks: Outfitting 

C++ for Multicore Processor Parallelism, O’Reilly Media, 

2007.

4.	 OpenMP Application Program Interface Version 4.0, 

OpenMP Architecture Rev. Board, 2013; www.

openmp.org/mp-documents/ OpenMP4.0.0.pdf.

5.	 L. Kale and S. Krishnan, “CHARM++: A Portable Con-

current Object Oriented System Based on C++,” Proc. 

ACM SIGPLAN Int’l Conf. Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPS-

LA’93), A. Paepcke, ed., ACM, 1993, pp. 91–108.

6.	 A. Alexandrov et al., “LogGP: Incorporating Long 

Messages into the LogP Model—One Step Closer 

CISE-15-6-Gropp.indd   8 25/11/13   8:41 PM



November/December 2013 � 9

Towards a Realistic Model for Parallel Computation,” 

Proc. 7th Ann. ACM Symp. Parallel Algorithms and 

Architectures, ACM, 1995, pp. 95–105.

7.	 L.G. Valiant, “A Bridging Model for Parallel Computa-

tion,” Comm. ACM, vol. 33, no. 8, 1990, pp. 103–111.

8.	 E.D. Brooks III, B.C. Gorda, and K.H. Warren, “The 

Parallel C Preprocessor,” Scientific Programming,  

vol. 1, no. 1, 1992, pp. 79–89.

9.	 C.E. Leiserson, “The Cilk++ Concurrency Platform,” J. 

Supercomputing, vol. 51, no. 3, 2010, pp. 244–257.

10.	 D. Buttlar, J. Farrell, and B. Nichols, PThreads Pro-

gramming: A POSIX Standard for Better Multiprocessing, 

O’Reilly Media, 1996.

11.	 J. Hill et al., “BSPlib: The BSP Programming Li-

brary,” Parallel Computing, vol. 24, no. 14, 1998, 

pp. 1947–1980.

12.	 V. Saraswat et al., X10 Language Specification, version 2.3, 

IBM, 2013; http://x10.sourceforge.net/documentation/

languagespec/x10-latest.pdf.

13.	 K. Feind, “Shared Memory Access (SHMEM) 

Routines,” Proc. Cray User Group Spring Meeting,  

Cray User Group, 1995, pp. 203–208.

14.	 W.W. Carlson et al., Introduction to UPC and Language 

Specification, Center for Computing Sciences, Inst. for 

Defense Analyses, 1999.

15.	 J. Reid, “The New Features of Fortran 2008,” ACM 

SIGPLAN Fortran Forum, vol. 27, no. 2, 2008, pp. 8–21.

16.	 J. Nieplocha, R.J. Harrison, and R.J. Littlefield, 

“Global Arrays: A Nonuniform Memory Access Pro-

gramming Model for High-Performance Computers,” 

J. Supercomputing, vol. 10, no. 2, 1996, pp. 169–189.

17.	 Cray, Chapel Language Specification, Version 0.92, 

Cray, 2012.

18.	 S. Balay et al., “PETSc Users Manual, Revision 3.3,” 

ANL, 2012; www.mcs.anl.gov/petsc/petsc-dev/docs/

manual.pdf.

19.	 Z. DeVito et al., “Liszt: A Domain Specific Language 

for Building Portable Mesh-Based PDE Solvers,” 

Proc. 2011 Int’l Conf. High Performance Computing, 

Networking, Storage and Analysis (SC11), ACM, 2011, 

article no. 9.

20.	 A.A. Auer et al., “Automatic Code Generation for 

Many-Body Electronic Structure Methods: The Ten-

sor Contraction Engine,” Molecular Physics, vol. 104, 

no. 2, 2006, pp. 211–228.

21.	 P. Balaji et al., “MPI on Millions of Cores,” Parallel 

Processing Letters, vol. 21, no. 1, 2011, pp. 45–60.

22.	 D. Goodell et al., “Scalable Memory Use in MPI: A 

Case Study with MPICH2,” Recent Advances in the 

Message Passing Interface Proc. 18th European MPI 

Users’ Group Meeting (EuroMPI 2011), LNCS 6960,  

Y. Cotronis et al., eds., Springer, 2011, pp. 140–149.

23.	 P. Balaji et al., “PMI: A Scalable Parallel Process-

Management Interface for Extreme-Scale Systems,” 

Recent Advances in the Message Passing Interface Proc. 

17th European MPI Users’ Group Meeting, LNCS 6305, 

R. Keller et al., eds., Springer, 2010, pp. 31–41.

24.	 C. Terboven et al., “First Experiences with Intel Clus-

ter OpenMP,” OpenMP in a New Era of Parallelism, 

Springer, 2008, pp. 48–59.

25.	 H. Pan, B. Hindman, and K. Asanovic, “Composing 

Parallel Software Efficiently with Lithe,” Proc. 2010 

ACM SIGPLAN Conf. Programming Language Design 

and Implementation, ACM, 2010, pp. 376–387.

26.	 J. Zhang, B. Behzad, and M. Snir, “Optimizing the 

Barnes-Hut Algorithm in UPC,” Proc. 2011 ACM/IEEE 

Int’l Conf. High Performance Computing, Networking, 

Storage and Analysis (SC11), ACM, 2011, article  

no. 75.

27.	 J. Mellor-Crummey et al., “A New Vision for Coarray 

Fortran,” Proc. 3rd Conf. Partitioned Global Address 

Space Programing Models, ACM, 2009, p. 5.

28.	 T. von Eicken et al., “Active Messages: A Mechanism 

for Integrated Communication and Computation,” 

Proc. 19th Ann. Int’l Symp. Computer Architecture, 

ACM, 1992, pp. 256–266.

29.	 J. Zhang, B. Behzad, and M. Snir, “Design of a 

Multithreaded BarnesHut Algorithm for Multicore 

Clusters,” tech. report ANL/MCS-P4055-0313, MCS, 

Argonne Na’tl Laboratory, 2013.

30.	 “Dynamic Exascale Global Address Space or DEGAS,” 

12 Feb. 2013; www.xstackwiki.com/index.php/DEGAS.

31.	 G. Bikshandi et al., “Programming for Parallelism and 

Locality with Hierarchically Tiled Arrays,” Proc. 11th 

ACM SIGPLAN Symp. Principles and Practice of Parallel 

Programming, ACM, 2006, pp. 48–57.

32.	 A. Van Deursen, P. Klint, and J. Visser, “Domain-Spe-

cific Languages: An Annotated Bibliography,” ACM 

Sigplan Notices, vol. 35, no. 6, 2000, pp. 26–36.

33.	 T. Ruppelt and G. Wirtz, “Automatic Transformation 

of High-Level Object-Oriented Specifications into 

Parallel Programs,” Parallel Computing, vol. 10, no. 1, 

1989, pp. 15–28.

34.	 E.N. Houstis et al., “PELLPACK: A Problem-Solving 

Environment for PDE-Based Applications on Mul-

ticomputer Platforms,” ACM Trans. Mathematical 

Software, vol. 24, no. 1, 1998, pp. 30–73.

35.	 S. Husa, I. Hinder, and C. Lechner, “Kranc: A Math-

ematica Package to Generate Numerical Codes for 

Tensorial Evolution Equations,” Computer Physics 

Comm., vol. 174, no. 12, 2006, pp. 983–1004.

36.	 D. Quinlan, “ROSE: Compiler Support for Object-

Oriented Frameworks,” Parallel Processing Letters,  

vol. 10, nos. 2–3, 2000, pp. 215–226. 

37.	 A. Hartono, B. Norris, and P. Sadayappan, “Anno-

tation-Based Empirical Performance Tuning Using 

Orio,” IEEE Int’l Symp. Parallel & Distributed Processing, 

IEEE, 2009, pp. 1–11. 

38.	 D.J. Quinlan et al., “Treating a User-Defined Parallel 

Library as a Domain-Specific Language,” Proc. 16th 

CISE-15-6-Gropp.indd   9 25/11/13   8:41 PM



10� Computing in Science & Engineering

Int’l Parallel and Distributed Processing Symp., IEEE CS, 

2002, pp. 105–114.

39.	 D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools 

for Implementing Domain-Specific Languages,”  

Proc. 5th Int’l Conf. Software Reuse, IEEE, 1998,  

pp. 143–153.

40.	 J.J. Willcock, A. Lumsdaine, and D.J. Quinlan, “Reus-

able, Generic Program Analyses and Transforma-

tions,” ACM Sigplan Notices, vol. 45, ACM, 2009,  

pp. 5–14.

41.	 O. Sarood, E. Meneses, and L.V. Kale, “A ‘Cool’ Way 

of Improving the Reliability of HPC Machines,” Proc. 

Int’l Conf. High Performance Computing, Networking, 

Storage and Analysis, ACM, 2013, article no. 58.

42.	 M. Snir et al., “Addressing Failures in Exascale Com-

puting,” tech. report ANL/MCS-TM-332, Argonne 

Nat’l Laboratory, Mathematics and Computer Sci-

ence Division, Apr. 2013.

William Gropp is the Thomas M. Siebel Chair in the 
Department of Computer Science, Deputy Director 
for Research in the Institute of Advanced Computing 
Applications and Technologies, and director of the 
Parallel Computing Institute at the University of Il-
linois at Urbana-Champaign. His research interests 

are in parallel computing, software for scientific com-
puting, and numerical methods for partial differen-
tial equations. Gropp has a PhD in computer science 
from Stanford University. He is a fellow of ACM, IEEE, 
and Society for Industrial and Applied Mathematics 
(SIAM), and a member of the National Academy of 
Engineering. Contact him at wgropp@illinois.edu.

Marc Snir is director of the Mathematics and Com-
puter Science Division at Argonne National Labo-
ratory and Michael Faiman and Saburo Muroga 
Professor in the Department of Computer Science 
at the University of Illinois at Urbana-Champaign. 
His current research focuses on software for extreme-
scale computing. Snir received a PhD in mathemat-
ics from the Hebrew University of Jerusalem. He is a 
fellow of American Association for the Advancement 
of Science (AAAS), ACM, and IEEE. Contact him at 
snir@illinois.edu.

Selected articles and columns from IEEE Computer 
Society publications are also available for free at 

http://ComputingNow.computer.org.

CISE-15-6-Gropp.indd   10 25/11/13   8:41 PM


