
PM/E Workshop - Questions and Issues to Be Discussed

Dates: March 9 – 11, 2015
Location: Rockville Hilton, Rockville, MD

Workshop Overview
The primary purpose of this workshop is to enable a detailed technical exchange among key
thinkers within the exascale system research and development community on the topics of
requirements and characteristics of programming models and environments and the resulting
research questions that must be addressed. That is, we need to discuss the vision of programming
models and environments for exascale computing. This is not an attempt to formulate a vision by a
consensus building exercise, but rather an attempt to enable an open and technically charged
context for discussions to inform future planning. Also, there is a need to formulate a conceptual
framework for evaluating programming models and environments, including parameterized
performance models, detailed quantifiable evaluation metrics, the relationship to other system
layers, and the integration both semantically and in terms of implementation of programming
models and runtime systems.

Goal

Establish the trajectory for planning of the ECI research program component that will develop,
define, and deploy one or more programming models, interfaces, and the supporting environments.
Such an emergent program planning process will include future follow-on, deep-dive topical
workshops, short-term studies, and joint planning review meetings. Although strongly interrelated
and mutually supportive, programming models are differentiated in terms of parallel semantics
from programming environments that provide services for workflow management and program
development/deployment.

Workshop objectives
1. Propose, discuss, and determine the required characteristics or properties of future

programming models
2. Review the application requirements for ECI PM/E(s)
3. Identify the key capabilities and elements of future programming environments
4. Determine the research questions that need to be addressed
5. Propose the methods for evaluating PM/E(s) research results

Terminology

Programming Model (PM): a set of abstractions that simplify and structure the way
the programmer thinks about and expresses a parallel algorithm. It embodies the
principles and semantics of computational parallelism, their interrelationships with
runtime systems, and name spaces of all globally referenced objects.
Programming Environment (PE): an ensemble of interoperable tools supporting all
aspects of program development, including compilers, code transformations, code
synthesis, code generation, auto-tuning and other optimization tools, debuggers,
runtime systems, workflow management, data analytics, visualization and steering,
and storage management.
Runtime System (RTS): The system software component to enable dynamic
adaptive resource management and application task scheduling through

introspection to achieve dramatic improvements in execution efficiency and
scalability with respect to static practices. Instances of runtime systems are
ephemeral and associated with individual applications that they serve and by which
their operation is informed.

Detailed Objectives and Driver Topics

Workshop Drivers
1. Establish a conceptual framework to discuss and frame the relevant technical issues, their

interrelationships, and their possible alternatives
2. Understand differentiation between programming models and programming environments
3. Identify and describe key concepts among alternative designs, avoiding premature

standardization and maintaining separation of concerns such as functionality and interface
4. Anticipate enabling technology opportunities and challenges
5. Explore road map for incremental evolutionary approach and justify changes as required

Mission Drivers
6. Discuss types of workflows that are supported intra-compute and inter-compute
7. How to get useful application drivers that in many cases may require complete rewrites

with new algorithms

Programming Model
8. Discuss abstractions and their semantics; elevate key abstractions to first class

consideration as a principal common goal of the ECI program plan and projects:
a. Parallelism
b. Global name space(s)
c. Locality/distribution/memory hierarchy
d. Synchronization
e. Introspection
f. Resilience
g. Communication
h. Time/space/energy management
i. Roles of runtime and compiler support

Programming Environment
9. Understand invariants of program characterization retained for performance portability

across systems of different type, scales, and generations
10. Explore performance models and productivity models to motivate approaches, challenges

and opportunities
11. Investigate debugging strategies for correctness and performance
12. Understand the needs for storage abstractions, from private local intranode storage to

shared parallel file systems in future programming models and environments
13. Establish needs and means for application interoperability to create compound jobs

Software Stack
14. Determine roles of programming models and programming environments within the

system stack; their requirements and interconnections
15. Characterize nature and coupling of runtime system with programming model as well as

responsibilities to programming environment workflow

Speakers
Invited speakers have a vital role in the workshop. Speakers should carefully read the goals and
detailed objectives described above for this workshop and prepare a focused presentation to
facilitate discussion during the breakouts.

Questions and Issues to Be Addressed by PM/E Speakers:

• How are programming models differentiated from programming environments and what
roles to they serve that are distinct but mutually supporting?

• What are the key new abstractions for parallelism that the community must adopt to
succeed at exascale? How should parallelism be identified and concurrency managed in
these models?

• Are there breakthroughs in programming models and environments that we should
explore, in addition to continued incremental improvements to existing ones?

• What are the most promising ideas for programming abstractions to represent data and its
distribution across the lateral and hierarchical memory structures?

• How should PM/E represent persistent objects and the storage system to programmers?

• Are there innovative ideas for integrating resilience and debugging into the programming
model?

• Many application teams are beginning to explore task-based and data-driven programming
models. Are there common abstractions and key features? How do they differ?

• Are there lessons to be learned from other communities that we can apply?

Questions and Issues to Be Addressed by Application Speakers:

• What are the key new abstractions within the programming models for parallelism that the
community must adopt that will allow you to achieve your exascale goals?

• What breakthrough in programming environments is required for exascale?

• How will you design your code to manage the potentially wide and deep memory hierarchy?

• How should PM/E represent persistent objects and the storage system to programmers?

• In what ways will programmers rely on high level environment services to facilitate
complex jobs from component programs?

• How will you manage the resiliency challenges in your code? What system support will you
assume to depend upon?

• Discuss how your application could utilize task-based and data-driven programming
models or some other model for expressing parallelism. How would you like to parallelism
and data locality in your application?

• New system classes and underlying execution methods may require alternative algorithms
to expose and exploit much more parallelism and use dynamic methods for resource
management. How should the applications community achieve this?

• Are there lessons to be learned from other communities that we can apply?

Parallel Session Breakouts
Many of the key discussions will occur during the breakout sessions. Six breakout sessions
are planned, each with a set of questions and topics that shall motivate discussion. In
addressing these challenges, do so in the context of the detailed issues discussed above in
depth.

Session I: Application Requirements for Exascale PM/E(s)
1. At a high level (not specific to any one application) catalog the application requirements at

exascale that should be addressed by the combination of Programming Models and
Environments. This will serve to conduct gap and coverage analysis of proposed PM/E(s),
and as a basis for measuring progress.

2. Consider extending parallelism through non-conventional semantic constructs to enhance
efficiency and scalability.

3. Describe the nature and importance of performance portability, productivity/usability,
performance, robustness, interoperability with other PM/Es, and vendor support.

4. Discuss issues with trying to extend existing models (MPI+X), and any barriers to adopting
new PM/Es,

Session II: Methods for Evaluating PM/E(s)
1. What are current best practices for evaluating PM/E prototypes using DOE applications?

What are the strengths and weaknesses of those approaches?

2. How is parallelism and scalability to be measured and projected?

3. What metrics should be used for future evaluations of PM/E?

4. How can the development of proxy applications be improved to help with this evaluation?

Sessions III: Characteristics of Programming Models
1. Discuss the following abstractions and their semantics, and how they should be represented

by the parallel Programming Model for extreme scale:

a. Parallelism
b. Global name space(s)
c. Locality/distribution/memory hierarchy
d. Synchronization
e. Introspection
f. Resilience
g. Communication
h. Time/space/energy management
i. Roles of runtime and compiler support

2. Map these abstractions to the application requirements gathered in Session I.

3. What dependencies do various Programming Models have on other parts of the software
stack? What are the natural separations of functionality?

Session IV: Characteristics of Programming Environments
1. What are the comprising elements of the programming environment (e.g.,

debuggers, performance analysis, storage + viz, …) and how are they integrated?
2. Map these abstractions to the application requirements gathered in Session I.

3. What dependencies does the programming environment have on other parts of the
software stack? What are the natural separations of functionality?

Session V: Research Questions for Programming Models
1. What are the key research questions in programming models that must be answered by the

research community including semantic constructs and intrinsic facilities like
interoperability with runtime before widespread adoption of new PMs and/or
consideration of forming standards?

Session VI: Research Questions for Programming Environments
1. What are the key research questions in programming environments that must be answered

by the research community before widespread development and adoption? Is there an
order and preferred method for pursuing these?

	Workshop Overview
	Goal
	Workshop objectives
	Terminology

	Detailed Objectives and Driver Topics
	Workshop Drivers
	Mission Drivers
	Programming Model
	Programming Environment
	Software Stack

	Speakers
	Questions and Issues to Be Addressed by PM/E Speakers:
	Questions and Issues to Be Addressed by Application Speakers:

	Parallel Session Breakouts
	Session I: Application Requirements for Exascale PM/E(s)
	Session II: Methods for Evaluating PM/E(s)
	Sessions III: Characteristics of Programming Models
	Session IV: Characteristics of Programming Environments
	Session V: Research Questions for Programming Models
	Session VI: Research Questions for Programming Environments

