
How To Replace MPI As The
Scalable Programming System

For Computational Science

William Gropp
www.cs.illinois.edu/~wgropp

2

Why This Talk Here?

•  The history of MPI and Beowulf are closely
connected
♦ MPI 1 Released May 5 1994 (Forum starts 1992)
♦ Beowulf late 93/early 94 (beowulf.org)

•  Beowulf relied on existing, portable, high
performance software for parallel
programming:
♦ MPI and PVM

•  Large, diverse system base supported
software for MPI: tools, libraries,
applications

3

Shared History

•  MPI is older, but not by much
•  Neither is a “least common

denominator”
♦ Which is a silly term; in math only GCD

makes any sense
♦  In fact, Beowulf and MPI are GCDs – they

succeeded because they were enough to get
the job done and, through “common”,
created a viable ecosystem for parallel apps

•  Many common strengths and
weaknesses (I’ll get back to that)

4

Some Definitions

•  Programming Model – Abstract approach to
programming. Usually a single approach.
♦  Message passing is a programming model

•  Programming System – A realization of (parts of) one or
more programming models
♦  MPI is a programming system

•  Execution Model – Abstraction of what the computer
hardware (and system software) can do
♦  Vector processing or a generic GPU are execution models

•  Least Common Denominator – No such thing
♦  Its greatest common denominator. Calling something an

LCD is a tacky way of saying you don’t like it
♦  The distinction is important, as we’ll see

5

MPI and MPICH Timeline

90! 91! 92! 93! 94! 95! 96! 97! 98! 99! 00! 01! 02! 03! 04! 05! 06! 07! 08! 09! 10! 11!

P4,
Chameleon!
!
!

MPI-1
Standard!
!
!

MPICH-1
Released!
!
!

MPI on
1M Cores!
!
!

MPI-2
Standard!
!
!

Verification!
!
!

Scalable
Trace Files!
!
!

!
!
!

Fault
Tolerance!

!
!

!
!

12! 13!

MPI-3 !
Standard!MPICH2

Released!
!
!

Hybrid Programming!

Multithreading!
MPI-IO apps!

MPICH 3.0
Released!
!
!

Performance research!

Proc Mgmt
Software!

!
!

I/O !
Algorithms!

!
!

6

Another Look at the History
of MPI

Books are important!

1994 1999 2014

NEW!

7

A Early Beowulf Timeline

1999 2001 2003

8

Why Was MPI Successful?

•  It addresses all of the following issues:
♦ Portability
♦ Performance
♦ Simplicity and Symmetry
♦ Modularity
♦ Composability
♦ Completeness

•  For a more complete discussion, see
“Learning from the Success of MPI”,
http://www.cs.illinois.edu/~wgropp/
bib/papers/pdata/2001/mpi-lessons.pdf

9

Portability and Performance

•  Portability does not require a “lowest common denominator”
approach
♦  Good design allows the use of special, performance

enhancing features without requiring hardware support
♦  For example, MPI’s nonblocking message-passing

semantics allows but does not require “zero-copy” data
transfers

•  MPI is really a “Greatest Common Denominator” approach
♦  It is a “common denominator” approach; this is portability

•  To fix this, you need to change the hardware (change
“common”)

♦  It is a (nearly) greatest approach in that, within the design
space (which includes a library-based approach), changes
don’t improve the approach

•  Least suggests that it will be easy to improve; by
definition, any change would improve it.

•  Have a suggestion that meets the requirements? Lets
talk!

10

Simplicity and Symmetry

•  MPI is organized around a small number
of concepts
♦ The number of routines is not a good

measure of complexity
♦ E.g., Fortran

•  Large number of intrinsic functions
♦ C/C++ and Java runtimes are large
♦ Development Frameworks

• Hundreds to thousands of methods
♦ This doesn’t bother millions of programmers

11

Symmetry

•  Exceptions are hard on users
♦  But easy on implementers — less to implement and test

•  Example: MPI_Issend
♦  MPI provides several send modes:

•  Regular
•  Synchronous
•  Receiver Ready
•  Buffered

♦  Each send can be blocking or non-blocking
♦  MPI provides all combinations (symmetry), including the
“Nonblocking Synchronous Send”

•  Removing this would slightly simplify implementations
•  Now users need to remember which routines are

provided, rather than only the concepts
♦  It turns out he MPI_Issend is useful in building

performance and correctness debugging tools for MPI
programs

12

Modularity

• Modern algorithms are hierarchical
♦ Do not assume that all operations

involve all or only one process
♦ Provide tools that don’t limit the user

• Modern software is built from
components
♦ MPI designed to support libraries
♦ Example: communication contexts

13

Composability

•  Environments are built from
components
♦ Compilers, libraries, runtime systems
♦ MPI designed to “play well with others”

•  MPI exploits newest advancements in
compilers
♦ … without ever talking to compiler writers
♦ OpenMP is an example

• MPI (the standard) required no changes to work
with OpenMP

♦ OpenACC, OpenCL newer examples

14

Completeness

•  MPI provides a complete parallel
programming model and avoids
simplifications that limit the model
♦ Contrast: Models that require that

synchronization only occurs collectively for
all processes or tasks

•  Make sure that the functionality is there
when the user needs it
♦ Don’t force the user to start over with a

new programming model when a new
feature is needed

15

Improving Parallel
Programming

•  How can we make the programming of real
applications easier?

•  Problems with the Message-Passing Model
♦  User’s responsibility for data decomposition
♦  “Action at a distance”

•  Matching sends and receives
•  Remote memory access

♦  Performance costs of a library (no compile-time
optimizations)

♦  Need to choose a particular set of calls to match the
hardware

•  In summary, the lack of abstractions that
match the applications

16

Challenges

•  Must avoid the traps:
♦  The challenge is not to make easy programs easier.

The challenge is to make hard programs possible.
♦  We need a “well-posedness” concept for

programming tasks
•  Small changes in the requirements should only require

small changes in the code
•  Rarely a property of “high productivity” languages

-  Abstractions that make easy programs easier don’t solve
the problem

♦  Latency hiding is not the same as low latency
•  Need “Support for aggregate operations on large

collections”

17

Challenges

•  An even harder challenge: make it hard to
write incorrect programs.
♦  OpenMP is not a step in the (entirely) right direction
♦  In general, most legacy shared memory

programming models are very dangerous.
•  They also perform action at a distance
•  They require a kind of user-managed data

decomposition to preserve performance without the
cost of locks/memory atomic operations

♦  Deterministic algorithms should have provably
deterministic implementations

•  “Data race free” programming, the approach taken in
Java and C++, is in this direction, and a response to
the dangers in ad hoc shared memory programming

18

What is Needed To Achieve Real
High Productivity Programming

•  Simplify the construction of correct, high-performance
applications

•  Managing Data Decompositions
♦  Necessary for both parallel and uniprocessor applications
♦  Many levels must be managed
♦  Strong dependence on problem domain (e.g., halos, load-

balanced decompositions, dynamic vs. static)
•  Possible approaches

♦  Language-based
•  Limited by predefined decompositions
-  Some are more powerful than others; Divacon

provided a built-in divided and conquer
♦  Library-based

•  Overhead of library (incl. lack of compile-time
optimizations), tradeoffs between number of routines,
performance, and generality

♦  Domain-specific languages …

19

“Domain-specific” languages

•  (First – think abstract data-structure specific, not science domain)
•  A possible solution, particularly when mixed with adaptable

runtimes
•  Exploit composition of software (e.g., work with existing compilers,

don’t try to duplicate/replace them)
•  Example: mesh handling

♦  Standard rules can define mesh
•  Including “new” meshes, such as C-grids

♦  Alternate mappings easily applied (e.g., Morton orderings)
♦  Careful source-to-source methods can preserve human-

readable code
♦  In the longer term, debuggers could learn to handle programs

built with language composition (they already handle 2
languages – assembly and C/Fortran/…)

•  Provides a single “user abstraction” whose implementation may
use the composition of hierarchical models
♦  Also provides a good way to integrate performance engineering

into the application

20

Enhancing Existing
Languages

•  Embedded DSLs are one way to extend
languages

•  Annotations, coupled with code
transformations is another
♦  Follows the Beowulf philosophy – exploit

commodity components to provide new
capabilities

♦ Approach taken by the Center for Exascale
Simulation of Plasma-Coupled Combustion
xpacc.illinois.edu

21

Replacing MPI/Beowulf

•  Really? Are you sure you can do better?
♦ Challenge: What needs to be replaced (with

costs of developing new ecosystem) and
what needs only be improved (better
implemented in the context of existing
systems)?

♦ Many “alternatives” are working around
limitations in current implementations, and
by doing so, dilute efforts better spent on
fixing real issues in implementations

•  Lets look at the strengths and
weaknesses of both

22

Weaknesses

•  Beowulf
♦  Distributed Memory.

Forces decomposition of
work

•  DSM notwithstanding
♦  I/O. Harder to use as

distributed; POSIX
make performance hard
to achieve (alternative
it to ignore POSIX
requirements, as NFS 3
did)

♦  Performance code of
interfaces (commodity);
esp. latency

•  MPI
♦  Distributed Memory.

No built-in support for
user-distributions

♦  No built-in support for
dynamic execution

♦  Performance cost of
interfaces; overhead
of calls; rigidity of
choice of functionality

♦  I/O is capable but
hard to use

•  Way better than
POSIX, but rarely
implemented well

23

Strengths

•  Beowulf
♦  Commodity, ubiquity

(runs everywhere)
♦  Distributed memory

provides scalability,
reliability, bounds
complexity (of hw)

♦  Leverages other
technologies, developed
independently

•  MPI
♦  Ubiquity
♦  Distributed memory

provides scalability,
reliability, bounds
complexity (that MPI
implementation must
manage)

•  Does not stand in the
way of user distributions,
dynamic execution

♦  Leverages other
technologies (HW,
compilers, incl OpenMP/
OpenACC)

24

If you insist: For MPI

•  Add what is missing:
♦  Distributed data structures (that the user needs)

•  This is what most “DSL”s really provide
♦  Low overhead (node)remote operations

•  MPI-3 RMA a start, but could be lower overhead if compiled in, handled
in hardware, consistent with other data transports

♦  Dynamic load balancing
•  MPI-3 shared memory; MPI+X; AMPI all workable solutions but could

be improved
•  Biggest change still needs to be made by applications – must abandon

the part of the execution model that guarantees predictiable
performance

♦  Resource coordination with other programming systems
•  See strength – leverage is also a weakness if the parts don’t work well

together
♦  Lower latency implementation

•  Essential to producitivity – reduces the “grain size” or degree of
aggregation that the programmer must provide

•  We need to bring back n1/2

25

For Beowulf…

•  Tighter integration of hardware, especially CPU,
Memory, and Interconnect
♦  See “leverage” issues for MPI

•  Better (parallel) I/O
♦  POSIX is a terrible, counter-productive model
♦  Need I/O that reflects DSM, consistency model required by

applications
•  This is where the innovation has been in non-HPC I/O systems

•  Better self-awareness
♦  Fault prediction/recovery
♦  Faults include performance, not just correctness

•  OS better supports parallel programming models
♦  E.g., thread scheduling, memory management

•  Standardized support for collective actions
♦  Many attempts: Scalable Unix Tools (1994), GLUnix (1997), etc.

26

Conclusions

•  MPI and Beowulf have given
computational science 20 years of
success

•  Both remain successful and relevant
today and into the future

•  No one feature led to their success
♦ Any replacement can’t just be better in one

way
•  Both have evolved and can continue to

evolve to support science in the 21st
Century

