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Background 
Proposed exascale computing architectures present the programmer with a host of 
challenges.  In particular: 
 

 Heterogeneous processing elements and application-managed NUMA 
hierarchies will require more complex abstract machine models.  Portability of 
these abstract models between different physical architectures may be limited. 

 Very large increases in the number of execution streams required to utilize 
hardware efficiently will force programmers to identify and expose more 
concurrency in their applications.  This, in turn, requires that the overheads 
associated with creating, managing and synchronizing this concurrency must be 
minimized. 
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 If highly asynchronous (and perhaps non-reproducible) execution environments 
become mainstream, they will present daunting challenges for debugging and 
performance analysis tools and techniques 

 
To overcome these challenges, programmers need improved programming models and 
techniques that will allow them to accomplish the goal of writing applications that will 
perform well across a variety of machines from different vendors or generations.  
 
To address the research challenges outlined above, this workshop convened 
approximately 45 domain experts in High Performance Computing Programming Models 
and Environments (PM/E) together for 2.5 days with the following high level objectives: 
 

1. Propose, discuss, and determine the required characteristics or properties of 
future programming models 

2. Review the application requirements for ECI PM/E(s) 
3. Identify the key capabilities and elements of future programming environments 
4. Determine the research questions that need to be addressed 
5. Propose the methods for evaluating PM/E(s) research results 

 
The workshop was a combination of invited speakers and open breakout sessions for 
directed discussion. The sections in the reports that follow capture primarily the 
discussions of those breakout sessions, which in turn covered the following topics: 
 

 Application Requirements for Exascale Programming Models and Environments 
(PM/Es) 

 Methods for Evaluating PM/Es 
 Characteristics of PMs and PEs  
 Outstanding Research Questions 

 
The workshop laid out the progress that has been made in the advancement of new and 
alternative programming models and environments through the ASCR X-stack Program, 
as well as application-centric efforts through the NNSA ASC Program and the ASCR co-
design centers to explore both evolutionary and revolutionary approaches to developing 
exascale-ready applications.  
 
Spurring renewed interest in this area is the recent announcement of the ASC Program’s 
Advanced Technology Development and Mitigation (ATDM) program element, which 
charters the ASC labs with developing the first “from scratch” set of applications in 
support of the weapons program since the start of ASCI in the mid 1990’s. Several ASC 
teams are actively exploring using next-generation programming models (beyond 
MPI+X), and work is starting immediately to get those off the ground. This revitalized 
application effort, along with the pre-exascale procurements in the CORAL (2017) and 
APEX (2020) timeframes led to a sense of urgency at the workshop for hardened 
research solutions. 

Key Takeaways 
 
Some of the high level issues raised and suggested next-step actions include: 
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Identified Issue Suggested Action / Next Steps 
Basic terms and their scope 
such as runtime, task-based 
models, tasks, dynamic vs 
static, and interoperability are 
not well defined 

 A process needs to be put in place to adopt 
common definitions and their scope of 
these terms that are central to the research 
community efforts. 

 Need agreement on what is considered 
“OS” versus “runtime”, while 
acknowledging there is overlap. Suggested 
definitions include privileged access (OS) 
vs user access (runtime) 

Programmers interface to 
programming models at 
multiple levels, and we need 
to start distinguishing which 
of those abstraction levels a 
particular PM is focusing on 

 The proposed taxonomy (see also p. 12) 
suggested and subsequently adopted for 
discussion in this workshop was High Level 
(Domain scientist), Mid-Level (Algorithm 
specialist), and Low Level (Tuning 
Specialist). This separation of concerns 
should be finalized and fleshed out to help 
focus discussions, and avoid PM’s 
misrepresenting themselves when they are 
largely focused on just one of those 
abstraction levels. UPDATE: The 
discussion at the April meeting seemed 
to conclude that only two levels were 
necessary. 

There is a natural tension 
when considering 
programming models and 
environments between 
monolithic vertically-
integrated solutions, and well-
defined interoperable 
components 

 The layers in programming model 
implementations need to be articulated (to 
the extent possible), and separation of 
concerns defined with standard APIs and 
bi-directional communication so that 
research can be focused, and vendors can 
focus on value-added pieces of the 
software stack. 

 Interoperability between runtimes is a 
desired (some say imperative) goal 

Introspection, or the ability for 
the various parts of the 
runtime and applications to 
query state is a critical 
challenge 

 Tools efforts (e.g. MPIT and OMPT) are 
pathfinding efforts in this space, and could 
define a set of key introspection 
parameters that runtime systems are 
expected to provide through standard APIs 

Adoption of new PM/Es must 
be done in concert with 
application teams who are 
expected to adopt them.  

 DOE must work harder to partner 
application teams with PM/E developers in 
a co-design process, and do so early in the 
design cycle. 

Application teams are getting 
anxious about the timescales 
for adoption 
 

 Pace of research and development must 
remain consistent with the schedule for 
machine deliveries, and what research can 
realistically be delivered in those 
timescales in a state suitable for production 
code adoption.   
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 We need to begin moving select research 
products into a hardened state suitable for 
early adopters, and fully understand the 
limitations of MPI+X before asking 
application teams to change 

Pattern-based approaches 
provided another valuable 
model for separating 
concerns.  

 Further research is required to understand 
how pattern-based approaches and/or 
pattern compilers can help focus PM/E 
efforts going forward.  

Support for improving existing 
codes and models cannot be 
ignored in the rush to advance 
new PM/E research 

 A two-track approach (evolution vs 
revolution) to research PM/Es as part of 
exascale must be taken, with 
commensurate funding available to both. 

Runtime systems needn’t only 
support resilience, but be 
resilient themselves (this 
probably belongs in the other 
report) 
 

 Resilience services, but also design and 
implementation a exascale runtime 
services is a critical challenge 

 

The impact of PM/E research 
needs to be broadly 
disseminated, particularly to 
the application community 
who are largely unaware of the 
potential 

 We need to catalog the open research 
questions, track those that we’re learning 
the answers to, and work to share peer-
reviewed success stories with the broader 
community 

A recurring comment during 
the workshop was the need 
for a requirements-based 
design. Since a primary goal 
of the exascale project is to 
deliver science, one measure 
of success will necessarily be 
satisfying application 
requirements. 

 This document contains a high level 
discussion of application requirements on 
the programming models and execution 
environment. These requirements need to 
be further fleshed out and expanded and 
then broadly disseminated for review and 
comment. 

 

Application developers need 
performance models and the 
associated cost models for 
the most likely programming 
models to be supported on 
exascale systems. 
 

 Since there is no clear, discrete set of 
programming models for future exascale 
systems, domain scientists need practical 
advice on the tradeoffs between the 
programming model alternatives. Research 
is required in order to develop these 
models. 

 
The selection of programming 
models is the linchpin for 
exascale research. Much of 
the work in hardware features, 
run time systems, 
programming environments, 
resilience, algorithms, and 
even application modifications 

 The performance and cost models 
mentioned above must be elucidated in a 
way that resonates with application 
developers. The applications need to 
illuminate the path to viable programming 
models. 
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In addition to the table above, several of the session authors below elucidate their own 
research priorities in more detail.  

   

cannot be done without 
knowing what programming 
models will be supported on 
exascale systems. 
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Session I ‐ Application Requirements for Exascale PM/E(s) 
Chair: Rob Hoekstra, Sandia 

Summary 
This section attempts to capture the requirements from the HPC applications community 
with expectations placed on new programming models and environments (PM/Es), 
which facilitate the effective use of Exascale computing platforms.  

Requirements 
The driving focus of application requirements on the programming model is to allow 
acceptable levels of both productivity and performance. With the ever-increasing 
complexity of HPC systems there is the inevitable risk that future PM/Es will likewise 
reflect that complexity.  The likely outcome is degradation in both productivity and 
performance as application teams with finite resources are able to address a decreasing 
scope of the programming environment. In addition, the current disparity in proposed 
designs threatens to compound the problem and make effective code portability nearly 
unobtainable. 
 
Therefore, first and foremost, the requirement that applications would make on future 
PM/Es is to manage complexity presented to the developer and strive towards reduction 
in that complexity whenever possible. There are two possible leverage points identified 
that can used to address this concern. 
 

1. Abstraction of performance aspects of the hardware. The current dominant 
model of bulk synchronous parallel (BSP) mapped well to traditional distributed 
memory platforms but it has become an increasingly ineffective model for more 
modern architectures. A new model must expose key aspects of the architecture 
while simplifying them to the essential concepts in an attempt to span a range of 
architectural designs. An example would be multi-level memory hierarchies. The 
majority of future hardware architectures incorporate some aspect of this 
complexity and a programming model that exposes a common abstraction for 
memory spaces would allow a programmer to address this concern, hopefully in 
a performance portable manner. 
 

2. Layered abstractions ranging from hardware aware low level abstractions 
to domain specific high level abstractions. A PM/E ‘stack’ which exposes less 
and less details of the hardware as you go up the stack allows for separation of 
concerns.  This creates significant opportunities for productivity increases at the 
application programmer level while still allowing performance experts to delve 
down into the lower levels and address performance aspects. Admittedly domain 
specific languages (DSLs) and other ‘high-level’ abstractions have often been 
met with cynicism in the past.  This cynicism persists but there is a recognition 
within the application developer community that the time may have come for 
higher level constructs to manage the ever increasing complexity. 

 
Much of the discussion above implies the value of pattern based approaches. Coupled 
with the programming model abstractions, common patterns can be extremely powerful 
in representing performance critical aspects of the community’s code base. Concepts 
such as patterns, motifs or dwarves have been proposed in the past with some 
community acceptance.  However, they have not played a significant role in the 
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development of programming models.  The new paradigm we face with Exascale 
platforms creates a renewed opportunity to explore these concepts with the hope of 
deriving greater benefit.  In fact, the community’s embrace of proxy applications seems 
to be a clear indication of a need in this arena. 

Semantic Constructs 
There is clearly an increased acceptance by the community that revolutionary changes 
are in store for our PM/Es. This strongly implies a significant change is semantic 
constructs. To a great extent, the expectation is that new semantics will be required to 
better express constructs for fine-grained parallelism, resilience, power and data 
movement to name a few. The current ‘bulk synchronous’ model can be construed as 
dominated by serial constructs with message passing constructs ‘wedged in’ to support 
the parallel aspect of the software. A programming model that embraces parallelism and 
treats data movement on node as well as off node as a first level concept seems 
necessary in the future. A good example of the former is the emerging directed acyclic 
graph based task parallel models (e.g. ParalleX).  
 
As mentioned in the previous section a layered approach seems warranted allowing the 
application programmer to focus on domain specific concepts while lower levels of the 
programming environment stack address the details of performance. The complexity this 
implies must be carefully managed however. In many cases this will place a much 
greater burden on the development and execution environments (including tools) than in 
the past, and implies a significantly greater cost in both the development and 
deployment of such. An example on one such issue already impacting the community is 
interoperability of programming systems such as OpenMP and pThreads. Without 
significant support within the runtime layers to manage resource contention, this 
interoperability is nearly impossible.  
 
An additional caveat to this approach is that it must not hinder the development of 
revolutionary algorithmic approaches that are better suited to the new hardware and a 
crucial aspect of Exascale computing. Historically, algorithmic advances have 
outstripped hardware performance improvements by orders of magnitude. These types 
of advances will likely require R&D that spans a significant fraction of these layers and 
the PM/Es should allow for this to be viable. 
 
No matter the path we follow, there is a crucial need to scope out both a ‘vocabulary’ 
and begin a dialog on open standards for these new PM/Es. The application 
development community is ramping up engagement with the expectation that they will 
need to dramatically overhaul their code bases.  We must supply them with a target and 
support those who are willing take risk in investing in these emerging technologies. 
These ‘early adopters’ are essential to success as we go forward. As much as possible, 
the PM/E development must be cognizant of the tremendous resources that may be 
required to support multiple re-writes of large scale codes and the pain and suffering 
incurred for those early adopters in particular. 

Performance/Portability/Productivity Tradeoffs 
The panacea would be that new PM/Es would allow improvement in all three dimensions 
of concern: performance, portability and productivity. While much of the Exascale 
discussion focuses on performance, the end goal is delivery of high quality and impactful 
computational science and engineering. Numerous examples of this tradeoff exist in our 
community with most application teams settling for ‘good enough’ performance and 
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portability due to limited resources in addressing machine specific concerns. Without 
improvements in the PM/E space the expectation is that this will only worsen. 
 
At the same time, this is an opportunity to explore revolutionary new approaches that 
have the potential to positively impact all three dimensions. In the end, it will be difficult 
to find consensus from the application community on this tradeoff. Different workloads 
drive different value systems that may prioritize a variety of different metrics: new 
science, throughput, etc. PM/Es must be able to respond to the varying demands. A 
layered set of abstractions as described previously seems likely to be a successful 
approach with this in mind allowing those who value performance to invest greater 
resources at the lower levels. Whenever possible however we want to increase the 
likelihood that performance improvements developed in one community become readily 
available in the HPC environment for adoption by others.  We recognize that pattern-
based approaches hold significant promise in this regard. 

Evolutionary vs. Revolutionary 
The application community has had the luxury of a relatively stable programming model 
represented by bulk synchronous parallel (BSP) and expressed most often with MPI 
semantics. There is significant evidence that message-passing technologies could carry 
us well into the Exascale era but there is equally damning evidence that BSP is rapidly 
becoming a barrier both for scalability at the node and system scales. This implies that 
the programming model almost certainly must change if we expect to adapt to the new 
technologies represented in future HPC platforms. 
 
Current open standards such as MPI and OpenMP are showing an ability to respond to 
these new demands and the community expects to continue to rely on them possibly for 
decades into the future. That being said, revolutionary approaches have by their nature 
a potential to dramatically improve productivity, performance and portability as noted 
previously. However, if we are to be successful in deploying these new PM/Es, we must 
aggressively engage the community to develop common abstractions that can lead to 
open standards. If history holds true, there will be many failures before success but only 
through the understanding gained by those failures can success often be reached.  To 
support the application community, a PM/E stack that allows the existing ‘systems’ to be 
initially used and then replaced by new approaches seems the most effective approach. 
 
A final note of caution; much of the content above drives the application community to 
dependences on a much deeper, more complex software stack to implement these 
PM/Es. This is a community that has often written their codes to depend only on the 
‘lowest common denominator’ of the software stacks to minimize their risk and 
dependencies. Early socialization, which relies on the growing ‘Co-design’ community, 
will be essential. Co-design approaches have already born significant fruit in this regard 
and we should strive to make them an intrinsic part of our culture. It is clear as well the 
vendor community must be an integral part of his effort since in the end they deliver the 
production system software and tools. Their involvement should increase the adoption of 
common open standards based software stacks and tools which are crucial to the 
outlined strategy. 
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Session II – Methods for Evaluating PM/E(s) 
Chair: Armando Solar-Lezama, MIT 

Charge 
The charge for this breakout session was to answer the following questions: 

1. What are current best practices for evaluating programming model/environment 
(PM/E) prototypes using DOE applications? 

2. What are the strengths and weaknesses of those approaches? 
3. How is parallelism and scalability to be measured and projected? 
4. What metrics should be used for future evaluations of PM/E? 
5. How can the development of proxy applications be improved to help with this 

evaluation? 

Discussion summary 
One of the first questions that was raised in the breakout session was: what is the goal 
of evaluation was. The following alternatives were raised: 

 Measure the research output of the program. 
 Measure the value of a particular project. 
 Determine what should be transitioned to production. 
 Determine when we can recommend that the applications team try something. 
 Determine when we can recommend to the applications team that they adopt 

something. 
 

With regards to the second potential goal, there was some concern that a checklist 
approach could be used in evaluating projects, leading to the cancelation of promising 
efforts. 
 
In an ideal world, projects should be evaluated on the basis of the criteria that actually 
matter:  

 Does a PM/E allow us to do science that we can't do today? 
 Does a PM/E allow us to work with machines that would be impossible to 

program with today's approaches. 
 
Unfortunately, evaluating on both of these measures cannot be done until you have full 
production quality programming environments, and by then it may be too late to discover 
that an approach didn't work, so the goal is to find good proxies that will allow us to 
make predictions regarding these two outcomes.  
 
There was some discussion as to the extent that ease of adoption should be a criteria. It 
was agreed that there could be more tolerance for a painful adoption process if stronger 
benefits could be demonstrated, as illustrated by Figure 1. 
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Among the capabilities that would be desirable and that could be evaluated were: Raw 
performance, memory consumption, support for exascale specific issues such as fault 
tolerance, heterogeneity, explicit cache management, future proofing and performance 
portability, as well as analyzability and the extent to which certain classes of bugs can be 
ruled out by the model.  
 
One point that Thomas Sterling emphasized was that we need to separate the 
programming model from its implementation, and in particular, to make sure we don't 
rule out potentially good programming models because of not-so-good implementations.  
 
Also, measuring against some of the exascale issues is difficult because we do not yet 
have exascale machines. With regards to performance portability, it was suggested that 
comparing performance portability across the existing variety of machines. It was also 
suggested that it is important to focus on how the performance portability happens: is it 
fully automatic, is it manual but with a strong separation between correctness and 
performance as in Halide where the mapping from high-level to low-level implementation 
can be defined separate from the high-level DSL description of the algorithm. With 
regards to aspects like fault tolerance or energy efficiency, the challenge in evaluation is 
that we do not yet know how the ExaScale machines will look like.  
 
Measuring ease of adoption was universally agreed to be harder. The main criteria that 
were brought up were 

 Is it close to what people already use? 
 Is it clean? Easy to learn? 
 Is it general and expressive? 
 Is there an ecosystem for it beyond us? 
 Does it support incremental migration, particularly for software that is already 

modular and well designed? 
 How transparent is the system in terms of performance and for debugging 

purpose? 
 
Composability was also suggested by Ron Brightwell as a good metric.  

Figure 1 Space of tradeoffs between capabilities and ease of adoption
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Kathy Yelick suggested thinking in terms of the process to go from research to 
production, and thinking about metrics that are relevant at every point in that transition. 
The transition is illustrated in figure 2 and involves the following steps: 

1) Start talking to applications people  
2) Start to engage with vendors (in parallel with #1) 
3) Reference implementation of PE 
4) Write application component jointly: PE and Apps group (goto #1) 

a. Evaluation done jointly 
5) High scoring implementation (at least for some case on some metric) 
6) Experiment with production code 
7) Develop multiple implementations for risk avoidance 
8) Toolchain support 
9) Full documentation, support, hardening 
10) Applications using programming models to get science results on exascale 

 
 
 
   

 
So for example, while mini-apps will not be enough to convince people to use a tool, 
they may be useful in demonstrating that the idea is promising and that science groups 
should start having some deeper engagement with the application teams. But once it 
gets past that stage, then it is important to have something more complex than miniapps 
to really demonstrate that a PM/PE can work for real codes. 
  
Finally, there was a lot of discussion about the difficulty in measuring human-factors type 
of issues, as these things are difficult to measure, especially before you have 
production-ready prototypes that can be tried out.  

  

Figure 2 Transition from idea to production tools 
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Sessions III – Characteristics of Programming Models 
Chair: David Richard, LLNL 
Chair: John Shalf, Berkeley Lab 

Charge 
The overarching questions for the programming models breakout discussion were  

1) How to map application requirements (taken from breakout session 1) onto future 
programming model constructs. 

2) Identify dependencies 
3) Clarify the role for runtime systems in programming environments 

 
The programming model abstractions and their semantics were enumerated as follows 
 

 Parallelism 
 Global Name Space 
 Locality/Distribution/memory hierarchy 
 Synchronization 
 Introspection 
 Resilience 
 Communication 
 Time/Space/Energy management 

 
The task of the breakout was to attempt to map the set of requirements (high-level 
domain abstractions in the PM/E report) that were enumerated in the applications 
discussion onto various programming abstractions (mid-level abstractions according to 
the PM/E report).   

Multiple Levels of Abstraction 
Although it may seem tempting to drive programming model research to converge on a 
single exascale programming model with a unified set of abstractions, such an effort is 
likely to fail. No such convergence exists with current hardware or applications, and no 
single programming model or set of abstractions is likely to meet the diverse and even 
contradictory requirements of all exascale programmers and workloads. To give just one 
example, how can a single programming model expose all possible concurrency in a 
given workload while simultaneously aggregating or grouping concurrent work to 
maximize utilization of specific hardware resources such as caches, scratchpads, SIMD 
units, or warps?   
 
In actual practice programmers interact with code at multiple levels.  Each level has its 
own set of goals, concerns, and abstractions.  The table below shows key abstractions 
needed in programming models needed for three different levels.  At the high level, 
models for domain scientists express the geometry and equations of a science problem 
without concern for algorithmic or machine details.  Concurrency is captured through 
expression of dependencies rather than attempting to specify parallelism directly.  
Ideally, significant code at mid-level models could be machine generated from the high 
level descriptions, but mid-level code hand written by algorithm specialists will prevail in 
regimes where domain specific abstractions are difficult to codify.  Mid-level abstractions 
are closer to actual hardware concerns, but still attempt hide specific details behind 
appropriate abstractions.  Low-level models are the home of tuning specialists 
concerned with performance critical details such as explicit memory placement and 
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movement.  At this level programming models must match the architecture closely.  For 
performance portability to be a reality we must identify methods to generate the vast 
majority of an application’s low level code directly from higher level models, leaving hand 
tuning for only the most critical kernels. 
 

 
Abstractions Needed/Expressed by Three Levels of Programming Models 
High Level  
(Domain Scientist) 

Mid-Level 
(Algorithm Specialist) 

Low Level 
(Tuning Specialist) 

 Science geometry  
o Locality (implicitly?) 

 Equations 
 Dependencies instead of 

parallelism 
 Data abstraction to 

express dependencies 
(references, aliases) 

 Algorithmic name 
space(s) 

 Data flow 
 Problem state 
Introspection support for 
tools & diagnostics 

 Locality/hierarchy 
 Dependencies 
 Parallel patterns 

o Scan, foreach, task 
DAG 

 Error sensitivity & 
recovery hints 

 Containment 
 Communication 
 Global name space(s) 
Time/space/energy 
management 

 Explicit data placement & 
movement 

 Explicit control of 
functional units 

 Synchronization & 
Locking 

 Pattern compiler & 
runtime 

 Introspection 
 Resilience notification & 

actions 
 Idempotence 
 Global name space(s) 
 Communication 
 Time/space/energy 

management 
Roles of runtime and 
compiler support 

Table 1 Separations of Concerns between different categories of programmers demands different 
levels of programming model abstractions 

 
The observations from Table 1 correspond strongly to the discussion of “separation of 
concerns” that was identified in the first chapter (Figure #1) of the first ASCR 
Programming Models Report (July 2011 in Marina Del Rey, CA.).  It also connects very 
well to the discussion of different levels (high, mid, low) of programming abstractions in 
the 2014 ASCR PM/E report.   
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Figure 3: This “separation of concerns” diagram shows the stratification of developer roles and 

expertise on a complex code project. The matrix represents the expertise of these respective 
programmers in the areas of the science domain, numerical algorithms, and the low level details of 
computer architecture and tuning. A person is an ”Einstein” if they are an expert, an ”Elvis” who is 
conversant in the area, and a ”mort” who is a non-expert. The programming environment offered to 
a domain may require a different set of criteria than the environment offered to the tuning experts at 

the driver level. 

Mapping Between Levels of Abstraction 
The vision for the separations of concerns identified in Table 1 falls apart if there is no 
way to map between the different levels of abstraction.  The mapping would implicitly be 
defined as an API at its most base level.  There is general agreement that an automatic 
system cannot be relied upon to infer these mappings from end-to-end.  The mapping 
process will require hints to make an impossible expert-system reasoning task into a 
process that is automatable and practical.   Also, for any mapping decision that is 
particularly expensive, it may still need to expose additional information at the highest 
level to guide the decision-making and mapping process.   For example, rather than 
having the programming system infer the optimal data layout on the underlying machine, 
it might be better for the upper level to describe the shape and dimensionality of the data 
so that the lower layers can automate the mapping process.  Rather than have the 
compiler automatically infer parallelism, it may be beneficial to describe data 
dependencies at a high level so the lower layers of the system have more information 
available to make decisions about how best to schedule work on the underlying 
computing elements. 
 
The biggest concern about layered abstractions is brittleness – particularly of the 
intermediate layers of the software.  How can work our way towards the higher-level 
software abstractions without the intermediate layers becoming ossified? One option 
discussed was for higher layers of the hierarchy of abstractions to be more declarative in 
order to give the lower layers more freedom for optimization, and for the lower layers to 
be more imperative to provide precise control over the hardware resources.  Spiral was 
given as an example of this approach, but other codes use this approach effectively to 
build more durable abstractions.  In general, this kind of brittleness has been the biggest 
impediment to creating durable high-level abstractions (PM/E has largely remained 
confined to lower levels of the hierarchy of abstractions as a result). 

Developer Roles Domain 
Expertise 

CS/Coding 
Expertise 

Hardware 
Expertise 

Application: Assemble solver modules to 
solve science problems. (eg. combine hydro
+GR+elliptic solver w/MPI driver for Neutron 
Star simulation) 

Einstein Elvis Mort 

Solver: Write solver modules to implement 
algorithms. Solvers use driver layer to 
implement “idiom for parallelism”. (e.g. an 
elliptic solver or hydrodynamics solver) 

Elvis Einstein Elvis 

Driver: Write low-level data allocation/
placement, communication and scheduling 
to implement “idiom for parallelism” for a 
given “dwarf”. (e.g. PUGH) 

Mort Elvis Einstein 
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Relating to Application Requirements 
The organization of the programming model abstractions into this hierarchical model 
resolves some long-standing debates such as the role of MPI in our programming 
environment.  The primary criticism of MPI is that it is almost an assembly language 
level of abstraction with regard to implementing parallel constructs.  However, the 
layered abstractions allow that an application programmer should rarely or never need to 
code directly in MPI – the communication layer would exist at the lowest level of this 
hierarchy and utilize encapsulation to hide the details from users at the middle and upper 
layers.   
 
The debate over programming models should therefore shift from which low level 
abstraction to use and determine how to map between the layered abstractions and 
whether the higher-level abstractions are ultimately serving the needs of the domain 
scientists (e.g. are we able to use encapsulation to properly embed the lower levels such 
as MPI communication). All too often, the upper layers of abstraction are implemented in 
a manner that is specific to a specific application. There are opportunities for common 
programming systems to supply higher-level abstractions to bridge the gap from low 
level to high level. However, candidates to fill this role of any given programming 
abstraction must identify its target audience (domain scientist, algorithm specialist, or 
tuning specialist) and must be vetted in the context of utility to the end user at that level 
of abstraction. 
 
Given the separation of concerns defined in Table 1, there is no single level of 
programming model abstractions that satisfy the requirements of the applications 
scientists.   
 
To evaluate different programming approaches in the context of application 
requirements, the question should be recast as: 
 

1. What abstractions automate tedious things that programmers do in practice to 
optimize codes or to make them portable across systems? 

2. Which programming models/products offer abstractions or features that automate 
porting and tuning tasks that are tedious, complex and expensive? 

3.  What does it look like to use them? Is it productive?  Is it understandable? Is it 
maintainable? 

Key Issues and Open Questions 
Building an ecosystem that supports interoperable programming models across all three 
levels will require significant efforts in both research and development.  Key issues that 
must be addressed include: 
 

1. Domain specific languages (DSLs) have proven to be very effective high-level 
models in certain domains such as stencil calculations. How transferrable is this 
success to other domains? How can we produce and maintain code generation 
systems that produce efficient low-level code in a variety of machine specific low 
level models across a wide variety of DSLs for a large number of domains? How 
to bridge the gap between application abstractions and DSL abstractions? 

2.  
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3. When DSLs are not available what are the alternatives that best support portable 
performance? What abstractions will likely prove to be durable across vendor 
platforms and over time? 

4. What are the proper abstractions and techniques to express, compute, layout, 
and schedule dependencies? Can we express them independently? Are they 
dynamic or static, implicit or explicit? What are the alternatives for control?  

5. Libraries have proven their value as resources for portable performance. How will 
libraries interoperate in codes that are composed in a variety of programming 
models? 

6. Exascale Machines will have massive on-node parallelism. What is the 
appropriate way of expressing fine-grain models? What is the role of task-based 
models at various levels of granularity? How do we express/ensure locality?  

7. As flop-to-bandwidth ratios continue to fall, an increasing number of workloads 
will find that performance is limited by memory and network bandwidth and/or 
latency.  What models and abstractions will be most effective in helping 
programmers maximize their use of bottlenecked resources? 

8.  What a resilience model would look like? What is the impact into each level of 
programming models? 

9. How will models at every level interact with debugging and analysis tools? 
10. Issue of performance vs performance portability (need to expand on this). 
11. Issue of data and task parallelism (need to expand on this). 
12. What are the implications of these issues for applications improvements/re-

writing? 
13. Exascale machines will be even harder to understand than current machines. 

What are the requirements of programming models to support debugging and 
performance tools? How do we tie things back to the original code from where a 
bug or performance bottleneck was found? Attribution problem.  APIS should be 
defined that makes this easy to do.  

14. Memory and I/O is much more complex on exascale machines. What are the 
mechanisms for managing memory and I/O?  What are the mechanisms for 
managing data locality and data movement? 

15. Mappings between the abstractions and mapping to the machine will be needed. 
What are these mappings? What is the role of code generation? 

16. Optimization questions. Abstractions have interfaces that need to be optimized. 
What performance optimizations can be automated through translation or RTS 
support or auto-tuning?  What AMM needs to be exposed? Abstractions need to 
have well defined semantics and interfaces.  

17. Performance and cost models questions. 
 

 
The process of addressing these questions, and other that we encounter along the way 
will need to be a collaborative effort between application scientists and programming 
model developers. The right timing of such collaborations will be essential and 
expectations have to be managed carefully. If you do not have a complete tool chain 
then it can be difficult to interact with an app - but if you wait until the tool chain is 
complete then you will miss important opportunities to interact.   
 
Finally, the pace of research and development must remain consistent with the schedule 
of machine deliveries; at some point we have to figure out what can be delivered in time 
for a particular generation of machines, keeping in mind that there will also be machines 
delivered in the future.   
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Findings & Recommendations 
1) No single programming model or unified set of abstractions is likely to meet the 

diverse and even contradictory requirements of all exascale programmers and 
workloads. 

2) There is no single level of abstraction for programming models.  
a. 3 levels were identified:  domain scientist, algorithm specialist, low-level 

tuning. 
b. The correct abstraction depends on the target audience.   

3) The quality and value of a given abstraction can only be understood in the 
context of its target audience 

a. Evaluating a low-level abstraction such as MPI or tasking  
b. Encapsulation of low-level constructs in higher level constructs is  

4) Encapsulation of low-level abstractions to form higher-level abstractions can 
either be provided by the programming environment or by application codes or by 
libraries.    

a. Programming languages should not be the sole determining factor for the 
success of the PM/E program.   

b. Library encapsulation and software engineering to create layering of 
abstractions should be considered as a co-equal path to success as a 
new programming language or tool. 

5) Application-level (high level) abstractions are relatively weak in current PM/E 
relative to available low-level abstractions.   

a. Such abstractions have high value for productivity because they can 
automate expensive and tedious tasks currently handled by programmers 

b. Such abstractions have higher risk because they potentially have a 
narrower scope of applicability 
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Session IV – Characteristics of Programming Environments 
Chair: Mary Hall, University of Utah 
Chair: Kathy Yelick, Berkeley Lab 
 

Overview 
Beyond the programming model, which is used to encode an application, the 
programming environment contains tools that are used to help programmers understand 
and develop their code. This section of the report combines the output of two 
independence parallel breakout sessions. 
 
As an initial organizing activity, the list of programming environment examples provided 
in the preparation materials, and then used this list to narrow down on some key 
examples which are discussed in detail below: 
 

 Compilers 
 Code transformation 
 Code synthesis 
 Code generation 
 Debuggers 
 Auto-tuning 
 Workflow management system 
 Data analytics 
 Visualization 
 Storage Systems 
 Optimized libraries 
 Performance analysis and visualization 
 Performance modeling 
 Correctness tools 
 Resilience tools 
 Build-and-test frameworks 
 Software quality tools 

 

Performance Analysis and Correctness (and Data Analytics and Vis) at Scale 
The dominant theme of this discussion was how to detect performance bottlenecks and 
correctness issues for applications running at exascale.  We noted that data analytics 
and scientific visualization pose similar challenges, but we did not discuss these further.  
We also pointed out that energy management was considered a subset of performance 
and could be treated in the same way.  The current state of the art for petascale 
computing is already proving to be a challenge for application programmers, and the 
issues are expected to significantly worsen given anticipated hardware and software 
changes for exascale.  A current challenge is that performance analysis and correctness 
debugging during production runs is made difficult by a reduced software stack on 
compute nodes, intolerable overhead, and batch scheduling.  That means that much of 
this analysis and debugging work needs to be done on scaled down application 
configurations typically running on different hardware, possibly with a different software 
stack.  Further, techniques for verification of implementation, both static and dynamic, 
may not be practical at scale. Consequently, intermittent problems or ones that only 
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arise at scale are difficult to pinpoint. For this reason, the applications often build in their 
own checking that can be run at scale, and rely on checkpoint/restart to recover from 
hardware failures.  As a result, bugs and performance bottlenecks remain challenging to 
detect and correct.   
 
The challenges associated with current approaches will grow in an exascale regime, 
assuming 100x more threads, more frequent soft errors, dark silicon, more dynamic or 
asynchronous parallelism, more complex multi-physics applications, and more complex 
software stacks. Our group talked about how integrating information across the software 
stack, and interacting with programmers in new ways would be required.  If we anticipate 
non-deterministic execution behavior due to soft errors, dynamic scheduling, or other 
factors, then the coverage testing phase of an application for performance and 
correctness must consider the design space of anticipated execution environments.  We 
considered the possibility that fault injection might be required during testing if soft errors 
become prevalent.   
 
Dynamic adaptation of the execution environment or the application’s execution will 
demand on-the-fly attribution of bottlenecks and errors to a cause, providing information 
directing the programmer to the problematic portions of the source code.  Attribution to a 
cause would demand sophistication in the hardware and software stack to not only 
collect measurements from a variety of sensors but also detect anomalies, patterns of 
execution behavior, and erroneous results.  This sort of sophistication may require 
significant interaction between layers of the software stack, and due to scaling issues, 
must collect, analyze, draw conclusions and then discard data.  Further, measurements 
may need to be tracked over longer time scales, rather than using instantaneous data. 
 
While some bottlenecks or errors may be the result of the execution environment, others 
might arise from intentional optimizations introduced by the application programmer or 
programming system.  For such application-specific optimizations, it may be valuable to 
have application or programming systems to control and/or verify that they have not 
harmed the accuracy of the scientific results.  For example, a number of approaches to 
reduce computation or avoid data movement, including communication-avoiding 
algorithms, variable-precision arithmetic, and relaxing data dependences across multi-
physics computations, may affect accuracy of the scientific result. As another example, 
an application programmer may wish to reduce the power or energy requirements of 
their application at the cost of some performance.  When making such 
accuracy/energy/performance tradeoffs, what tradeoffs are tolerable is dependent on the 
application or application domain, and therefore must be expressed as part of the 
application or its underlying domain-specific libraries and programming systems.  We 
also need to build into applications the verification of scientific results.  Further, we may 
want to provide mechanisms for introspection so that applications can self-diagnose 
bottlenecks and errors. 

Performance Portability 
Ideally, application programmers would like to write and maintain a single application 
code that runs well across many platforms.  This type of performance portability may not 
be practical with current and expected machine diversity – already applications have 
multiple code bases or “ifdefs” in the code to switch implementation and even algorithmic 
approaches based on architectures.  An important goal of the exascale program is to 
minimize, if not eliminate, the changes needed to move applications across machines 
and still obtain excellent performance.   



 

20 
 

 
Both breakout groups identified that the approaches to performance portability roughly 
fall into three broad categories: encapsulation, translation, and auto-tuning – including 
some combinations of these three. These are discussed in more detail below. 

Encapsulation 
Encapsulation involves refactoring code to separate (roughly) the mathematics from the 
computer science, i.e., by writing the code in such a way that the inner loop nests can be 
easily identified and therefore modified when one is moving code to new node 
architectures.  This provides little real performance portability, but makes it easier to 
make the changes between platforms.  User-friendly abstractions that make use of 
operator overloading and templates, e.g., Kokkos, RAJA and TIDA, can also help with 
this type of encapsulation.  At a higher level, techniques that separate algorithms (e.g., 
expressed as a DAG of dependent tasks) and schedules can also aid in performance 
portability; in this case the scheduler may need to be rewritten to take advantage of 
features like heterogeneity, and some level of common portable must be possible within 
the tasks (e.g., it doesn’t handle different SIMD intrinsics), but still provides a fairly 
narrow part of the application to manually port.  Applications that can take advantage of 
highly optimized libraries (LAPACK, PETCs, FFTW, etc.) also gain performance 
portability as the libraries may be manually ported and tuned without changing the 
application.  Sparse matrices and stencil computations are examples of things that don’t 
fit as well into this class, since the set of matrix structures or stencil operators is too 
large to encapsulate in a library.   
 

Translation 
Solutions based on translation take some type of input, e.g., a standard program text or 
domain specific language, and convert that into highly optimized and specialized code 
for each platform.  These have shown promised for areas like stencils because the 
computations are fairly simple loop nests and can be analyzed and translated for 
sufficiently constrained languages.  The approaches include separate domain-specific 
languages (DSLs), general-purpose languages with possible annotations, DSLs 
embedded within a general-purpose language, and use of template metaprogramming to 
perform translation at template instantiation. Both full-fledged compilers and special-
purpose translators (specializers) are used.  
 
Domain-specific programming systems – languages, libraries or optimizations -- can 
provide specialized implementations from high-level mathematical or algorithmic 
specifications.  Not all domain-specific systems aim for high performance, as their main 
advantage is programmer productivity, but we saw examples in the plenary talks that 
with underlying architecture-aware mappings, domain-specific systems can produce 
code that matches the performance of manually-tuned code.  Future research in this 
area will need to address composition of domain-specific tools for applications that draw 
from multiple domains, and tools that ease the development of domain-specific 
programming systems. 

Auto‐tuning 
Translation and encapsulation provide ways of generating architecture-specific code, but 
don't provide techniques, on their own, for selecting the right version of the code.  
Traditionally, a performance model built into a compiler would perform that selection, but 
in recent years the use of auto-tuning has proven useful.  Auto-tuners select from a set 
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of possible optimized versions by running them on the target system and choosing the 
best possible within a class of inputs, e.g., matrix size.  This is used within libraries, 
compilers for both general purpose and domain-specific languages.  For some settings, 
wholesale algorithm replacement may be necessary, and for this auto-tuners sometimes 
include support for algorithmic choice, in which a set of equivalent algorithms can be 
specified and used as part of auto-tuning.  
 
Many in the breakout session were familiar with using auto-tuning to adjust the value of 
optimization parameters such as number of threads or tile sizes – the same parameters 
that are exposed by the mid-level mapping tools.  What was less familiar were tools that 
support expressing and selecting among code variants, or distinct implementations of 
the same computation that are functionally equivalent but may be better suited to 
particular architectures or input data sets.  Today, libraries and application code that has 
been optimized by auto-tuning are not uncommon in DOE applications, but we were not 
aware of production applications that employ auto-tuning as part of the build process.  
Future research and deployment of auto-tuning must support code variants and integrate 
auto-tuning into the build process so that it can be used to achieve performance 
portability and apply to future architectures.   

Dynamic Application Building and Execution 
The techniques for performance portability in the previous subsection all benefit from the 
ability to specialize implementations for their unique execution context (including target 
architecture, application configuration and input data set).  A general strategy for 
optimization specialized to execution context is to configure the application at run time 
once execution context is known.  Most or all of the techniques our breakout session 
discussed in this category are not used in production HPC codes, but the question arose 
as to whether they might be more applicable in an exascale regime.  For example, dynamic 
code generation and just-in-time compilation could be used to generate code tailored to a 
specific execution context.  Auto-tuning could be used to assemble code variants and 
adjust optimization parameter values at run time. We also discussed how asynchronous 
many-task run-time abstractions could be supported to dynamically map code to 
hardware. These would only be profitable if the performance gain from specialization was 
greater than the overhead of assembling applications dynamically. 
 
A concern with all these approaches is the potential for non-deterministic application 
behavior if code is never tested for a specific execution context (see subsection on 
performance analysis and correctness).   

Correctness Debuggers 
Many of the cycles used on the DOE computing centers are consumed by large 
community codes that may have hundreds of thousands to millions of lines of code.  It is 
important to separate the problem of validating a numerical model (a mathematical 
formulation approximating a physical system), and verifying the implementation of that 
model.  The programming environment tools address only the latter.  Moreover, changes 
to simulation codes can introduce bugs that are difficult to detect, because rather than 
causing the program to crash or produce obviously unexpected behavior, they may have 
subtle problems in the numerics that are only visible with detailed analysis.  Such errors 
could be the result of simple indexing errors (e.g., off-by-one array access), bugs in 
packing or unpacking numerical data to send between processors, insufficient precision 
in the numerical representation, and any number of other sources.  Thus, while 



 

22 
 

traditional debugging and program analysis tools may help to detect such errors, they do 
not specifically address the issues that arise in debugging numerical code.  
 
The group discussed both the current state of debugging and also expectations of what 
would be needed for exascale computing.  The DOE centers use parallel debuggers 
such as Totalview and Alinea, and GDB, although these are often installed well after the 
system has been up and running applications.  The general perception among the group 
was that many codes are still debugged using print statements.  For large applications or 
frameworks used to support a class of applications, debugging support is often built-into 
the code.  This may be used to ensure that higher level properties, such as conservation 
of forces, in addition to lower level correctness assertions.   In addition, parts of the code 
used for checkpointing due to system errors are invaluable in debugging: an application 
that has crashed can be restarted from the last checkpoint and run with debugging 
support to examine the error.  That said, checkpoint can itself be a debugging challenge, 
since data structure and type information may be lost in the checkpoint file, making it 
easy to introduce bugs in either the save or restart code, which go undetected for a long 
time.  Tools are need to inject errors into running application to test various resilience 
approaches. Debugging on current petascale systems has its own set of challenges due 
to the size and complexity of the traces across all of the cores, and exascale 
applications will be even worse.  Sometimes large parallel applications can be debugged 
by tracking only a single representative process, or by running at a more modest scale 
(e.g., one thousand threads) and the debugging states merged.    
 
In addition to those current tools future exascale programs will have higher degrees of 
thread-level or task-level concurrency, which will require better support for race 
detections and the ability to visualize complex task graphs.  Many of the applications in 
the broader HPC community still are written as pure message passing parallelism, 
where race conditions are much less likely to occur, so understanding how to identify 
and debug data races in multithreaded code will require training for the broader 
programming community.  Even with current OpenMP code, the anecdotal evidence 
suggests that race conditions are not a major problem at the application level, although 
they are more frequent in the runtime systems themselves. Reproducibility of numerical 
results is particularly important in debugging and in some production applications.  
Reductions that are optimized to a particular hardware configuration or atomic updates 
on floating point values can both lead to irreproducible behavior.  Programming models 
that can ensure reproducibility in reductions and for (if possible) atomic updates would 
be valuable; this is viewed a feature that should be available on demand, since it may be 
expensive and is not required for all usage scenarios. Finally, if the frequency of 
transient hardware errors rises, support for detecting these will be important; they can 
easily be confused with data races, for example.  Other types of system errors, such as 
energy reports, will also require debugging support.    
 
Overall, the problem of correctness (and performance) debugging is largely one of 
reverse engineering problem the mapping of the program to the machine, to understand 
what happened. As runtime system become more dynamic and more sophisticated, this 
reverse engineering problem becomes more difficult.   

Performance and Energy Optimization Tools 
While correctness is essential and performance somewhat option, the general opinion at 
the meeting was that Performance tools are used more than correctness tools.  This is 
probably due to the subtlety of identifying performance errors.  Tools of different types 
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(tracing vs. sampling, local vs. parallel) were discussed, including Valgrind, Vampire, 
TAU and HPCToolkit.  There is probably a need for two different kinds of tools, or at 
least usage modes, to address both expert and novice use.  For example, course 
grained statistical analysis may be run to identify egregious performance problems, 
possibly even by default on a system.  
 
In general, performance tools for Exascale should allow for composability across 
application components (being able to performance tune separately or in whole) and the 
ability to specific measure the success criteria.  For example, if power or energy 
utilization will be constrained then tools are needed to measure these in addition to 
running time or communication load.  One can imagine scenarios in which these metrics 
are part of the allocation limits on a system, e.g., it may not be possible to run the entire 
machine in a “high power” model due to power caps, so a mix of high and low intensity 
jobs are required.  There are also proposals to give the programmer some control of 
power and reliably, e.g., running longer or with higher error rates at lower power; tools 
will be needed to support any such interaction. 

Storage Abstractions  
One group touched briefly on the topic of storage abstractions, although a separate 
report has been done on storage systems and I/O, which includes requirements for 
programming environments.   New models of storage will be important on Exascale 
systems, and they need to be integrated into future programming models and 
environments.  These systems will contain new types of non-volatile memory, with much 
higher bandwidth than today’s disk-based systems; these may be used for fault 
tolerance and for preserving scientific data across complex workflows.  Overall, the 
storage architecture will be more complex that on today’s systems, with levels of 
memory and storage that will be under user level software rather than hardware or 
system control.  The storage systems may expand value of Exascale systems and 
accommodate new types of applications from data analytics and other environment. 

Performance Models 
Performance models are an important way to understand performance on current 
systems and to predict performance on future ones.  While “performance” is most often 
about running time, there may be other performance metrics, such as energy use or 
failure tolerance, that may be modeled as well. There were three types of performance 
models discussed in this meeting: benchmarks to model application workload in the 
design of compilers and tools; simulation tools used to test and evaluate future 
architecture and microarchitecture designs; and analytical models to aid in estimating 
performance.  Analytical models were generally viewed as useful for understanding 
performance bounds, e.g., computing running time limits on performance based on 
bandwidth requirements, but they can be inaccurate or very complex for detailed 
analysis of hardware features with discontinuous behavior.  Understanding failures is an 
area where better modeling is needed to help in the design of programming 
environments; even a coarse model of which types of faults will be most common, 
whether they are uniformly distributed (which seems unlikely) and what their domain of 
failure is would all be valuable.  There is work ongoing to collect databases of failure 
information from existing systems, which may help in some of these predictions, 
although Exascale systems are expected to have higher error rates due to technology 
effects and scale.  
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Productivity Models 
Productivity of Exascale systems is critical to the success not just for Exascale 
applications, but to the impact of this technology on deployment smaller systems (e.g., 
Petascale racks) and for applications outside of the DOE space.  The goal of the 
Exascale Computing Initiative is to develop useable and productive Exascale systems, 
not systems that merely achieve high performance (1018 floating point operations per 
second) but are too complex for most people to program or too unbalanced for most 
applications.  That said, productivity has been notoriously difficult to measure or model, 
because it is highly dependent on the particular expertise of the community and is not 
easily quantifiable.    
 
A number of productivity metrics were discussed:  

 Technology adoption, i.e., use of Exascale hardware and software technology 
 Utilization and demand for deployed Exascale systems 
 Science and DOE mission results that come from the use of Exascale systems 
• Number of programs that run on Exascale technology (use the architectures and 

programming models) 
• Trickle down to petascale in a rack, to cloud data centers, and other domains 

 
Further discussions will be required to identify the general goals for productivity and to 
define a metric by which it can be measured.   
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Session V – PM/E Research Questions 
Chair: Thomas Sterling, Indiana University 

Introduction 
 
The Exascale Programming Model (XPM) is an abstraction of the interface between the 
user application program and the exascale computing system. It represents the 
conceptual strategy by which a user computation is structured, the classes of objects 
that comprise it, and the flow control methods that guide its concurrent execution. It is 
not a language or library but rather a family of languages and libraries that could be 
implemented consistent with its semantics.  
 
Exascale computing will impose unprecedented challenges to future programming 
models due to extremes related to: 
 

 Scalability 
 Efficiency 
 Architecture heterogeneity 
 Resilience 
 Energy demand 
 Performance portability 
 Productivity, and 
 Generality 

 
In addition to these challenging properties of exascale computing are two additional 
assertions to be addressed: the exploitation of runtime system software with possible 
hardware architecture support to exploit dynamic adaptive resource management and 
task scheduling and interoperability with other concurrent programs either on the same 
computing platform or potentially on other interconnected high performance computers 
at the same time. 
 
This report identifies and describes a set of strategic research questions that must be 
answered prior to the establishment of a working and supportive programming model for 
exascale computing. Key issues are then expanded in detail to clarify and refine specific 
questions in preparation for planning future research programs.  

Strategic Questions 
 
An exascale programming model may prove to be significantly different from 
conventional practices in terms of its semantics and abstractions due to the fundamental 
issues of essential innovation driven by the distinguishing properties of future extreme 
computing demands. While there are many detailed questions to be resolved some 
depending on specific approaches and assumptions, overriding strategic questions 
critical to the success of exascale and relevant to all likely models to be pursued. These 
strategic questions are delineated and briefly described as follows: 
 

1) Parallelism – what is the semantics of parallelism as a defining component of 
future exascale programming models that will yield billion-way concurrency 
required for trans-exaflops performance regime? Such new semantics must 
provide a unified programming interface that represents many levels of task 
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granularity and precedence constraints as well as parallel control 
synchronization.  

2) Latency – how is the delays resulting from the propagation of access requests 
and responses to remote resources to be mitigated to avoid imposing a critical 
bottleneck? What is the role of future programming models in supporting the full 
system methodologies to minimizing and hiding latency effects? In particular, 
how will the programming model facilitate the amelioration of the efficiency 
degradation due to the variability and uncertainty of latency asynchrony? 

3) Runtime Dynamic Execution – in what ways will the programming model 
exploit the opportunities of dynamic execution, possibly including adaptive 
methods, to improve efficiency and scalability through the application of runtime 
system software? What support does the runtime system have to provide? How 
will the programming model interoperate with and inform the runtime system? 
What is expected of advanced introspection methods and what can be their 
capabilities? 

4) Name Space – What are the semantics of naming of referential objects that are 
first-class and the hierarchy of such name spaces that are represented in the 
programming model? How does this related to control and continuations? 

5) Control State – what is the parallel control state, the semantics of parallel 
control, and the distribution and dynamic migration of continuations as 
represented within future exascale programming models? 

6) Productivity – What attributes of the programming model facilitate the 
combination of ease of use and sustained performance? 

7) Invariants – What aspects of the programming model will guarantee 
performance portability including invariants that are common to all target 
platforms? 

8) Locality – How is the distributed aspect of the data and control flow is reflected 
within the programming model to benefit from locality to minimize latency and 
overhead and to exploit the distribution of computation for exploitation of 
concurrency for performance. 

9) Interoperability – Programs must be able to work with each other without having 
to be explicitly designed to do so. How is this to be achieved intrinsically within 
the programming model? 

10) Resilience – in support of active methods how will the programming model 
inform fault tolerance strategy and mechanisms to strengthen reliability? 

11) Energy Efficiency – what aspects of the methods to achieve energy efficiency 
and power bounded computing will be supported through the programming 
model and the interfaces based on them? What information can the programming 
model provide to influence optimization with respect to energy? 

12) I/O – how does the programming model reflect and represent external 
information flow of sufficient generality to adapt to diverse interface conditions? 

13) Performance model – what is the objective function that will be used to drive 
development and optimization of programming models? 

Detailed Questions 
 
Data management is among the greatest of challenges in parallel computing and is 
likely to become more severe and of greater concern as we enter the exascale era. Both 
the requirements of the applications and the challenges to effective use of the emerging 
highly parallel architectures are driving improvements and increased sophistication in the 
creation, distribution, naming and dynamic placement of problem data. Efficiency of 



 

27 
 

access, exploitation of parallelism through distribution, reduction of latency effects 
through locality aggregation, and repartitioning for load balancing are all areas to which 
the programming model and resulting interfaces contribute in combination with input 
data set description, system specific loaders, compilation, and runtime systems. A 
number of detailed issues must be resolved including: 

 Data abstraction model and representation schema 
 Expression of the dimensionality of arrays 
 The challenge and opportunity of cache oblivious programming for large 

problems such as the global array model 
 Automatically tiling of arrays and how to express array dimensionality 
 Consistent data models and bindings depending on level of memory hierarchy 

 
Naming and Addressing are closely associated with data management but even more 
strongly define the nature of the programming model semantics. They differentiate 
shared memory models from distributed memory models, establish requirements and 
limitations of cache coherence, open opportunities for new kinds of memory hierarchy 
such as scratch pad memory and NVRAM layers, and determine how abstract data may 
be mapped to physical memory locations. For programming models there are open 
issues as to what degree the programmer is responsible for management and control of 
the way objects are referenced and the relationship between such referenceable objects 
and their physical distribution and access. Such issues include: 

 Global naming 
 How to express constraints on references to facilitate analysis? 
 Distributed memory with a global name space? 
 Remote versus local: write in one model – symmetry of semantics for accesses? 
 Oblivious to shared memory versus distributed memory 
 Translation of virtual to physical addresses both locally and globally 
 PGAS 

 
Parallel control flow in the broadest sense of a programming model determines the 
semantics of parallelism, task delineation and precedent constraints, synchronization, 
granularity and ultimately efficiency and scalability of parallel execution. The 
programming model distinguishes the degree to which the programmer explicitly defines 
the program parallelism or depends on automatic methods for exposing and exploiting 
computation concurrency to deliver performance as well as other aspects of operation 
such as latency hiding. Models are distinguished by their approach to parallel control. 
Among the issues to be considered are included: 

 Unified or hierarchical model of parallelism 
 Form and function threads (if they exist) and their interrelationships  
 Functional (value oriented) or mutable side-effects 
 Pre-emptive or non-preemptive 
 Synchronization semantics like dataflow and futures 
 Break for subset tasks 
 Granularities versus overheads of control 
 Support for conventional methods 

 
The abstract machine model is the overall conceptual execution framework visualized 
by the parallel programmer through the programming model semantics and syntax. It 
establishes the general philosophy and the operational principles of the programming 
strategy that is to be shared across computer platforms on which programs are to be 
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run. It influences the relationship between the user interface, its environment, and the 
system software. It also determines performance tradeoffs of processing, memory 
access, and communication. Many questions about the abstract machine model have to 
be answered explicitly or implicitly in the formulation of the programming models. Among 
such issues are included: 

 The essential aspects of abstract machine model that defines target for 
programming model. Can there be a portable abstract machine model to support 
a programming model across disparate platforms? 

 Functional computing is one possible abstract machine model with a strict pass 
by value and single-assignment semantics. While probably too purest and 
restrictive, elements of this paradigm could contribute to the abstract machine 
model 

 What is the hierarchical organization of the abstract machine model and what are 
the modules of which such hierarchy structure is comprised? 

 Multiple layers of programming models from very high level (possibly DSL) to low 
level (C like but with parallelism). At each level it is possible to consider more 
than one programming model. What differentiates them and what roles do they 
serve?  

 How does the abstract machine model definition contribute to the separation of 
concerns for the programming model? 

 What aspects of the abstract machine model are implemented by the 
architecture, the runtime system, and the compiler? How is the information 
between levels and across domain spaces bridged? 

 Can machine independent parallelism be built into compilers, not just 
sequences? 

 Is it possible to avoid explicit communications management? 
 How do we define the machine abstraction of a parallel task? 

 
Resilience is a property of a system that establishes means and mechanisms for 
delivering reliability in the presence of faults. The programming model may treat the 
system as a failure free platform, crash when encountering a fault, or contribute to 
response actions upon an interrupt. Key issues include: 

 What is the right resilience model? 
 How can programming models capture resilience information? 
 What is the balance of responsibilities between the programming model, the 

runtime control system including operating system, and the hardware 
architecture? 

 
Debugging is a critical part of the programming process and the programming model 
has to incorporate interface hooks that enable to programmer to determine program 
state and establish correctness conditions. Debugging of parallel programs can be much 
more challenging than for sequential programs due to the multiplicity of concurrent 
execution paths possible to producing a solution. Additional problems like race 
conditions and the management of synchronization variables complicate the 
programming process. Issues include: 

 Fault model 
 Methods of error detection 
 Kinds of information provided by the application program for detection and 

recovery 
 Runtime system support of programmer debugging 
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A performance model is required to guide the programmer in determining choice of 
program structure, flow control, distribution, and scheduling alternatives to achieve 
optimal performance through efficiency and scalability. This will lead to means of 
performance optimization and tuning as well as cross-platform performance portability. 
But what that performance model is and how it is employed through the programming 
model and environment of tools is far from determined for exascale computing. 
Research questions include: 

 What is the performance model that will drive the development of application 
programs? 

 How does the programming model relate to the performance model? 
 How will the runtime system combine the performance model and information 

from the programming model to manage task scheduling and resource 
management for best performance? Included is automatic aggregation and 
locality management. 

 Instrumentation for measurement of program behavior is guided by expectation 
of performance sensitivities and designed within the context of a performance 
model 

 
Hardware architecture is evolving as it traverses the pan-petaflops performance regime 
during this decade. Current trends emphasize multi/many-core and GPU accelerator 
processor architectures within symmetric multiprocessor shared memory nodes 
integrated in large-scale parallel systems through high bandwidth system area networks. 
But new processor core designs are being considered to minimize energy, enhance 
reliability, reduce overheads, and manage latencies for greater efficiency and scalability 
than feasible with conventional designs. Mobile and embedded computer architectures 
such as ARM-64 are being explored. While vendors suggest their roadmaps are set, in 
truth, the final exascale architectures are yet to be defined. Programming models have 
followed computer architecture to facilitate their application. But without a firm definition 
of those architectures in the next decade, questions remain that must be resolved 
through research in order to prepare future programming models. Such questions 
include but are not limited to: 

 Name space and global address space and hierarchies reflected by architecture 
 Thread management architecture support for control and switching 
 Tradeoff space for load balancing versus data movement costs 
 Native semantics of parallel flow control supported by ISA 
 Bandwidths, latencies, and overheads of architecture structure 

 
Application codes: programming models are representative schema to capture the 
knowledge, requirements, data structures, and control patterns inherent to the definition 
of an application. Exascale applications in many cases will impose unprecedented needs 
on the target computational platforms and the programming models and interfaces must 
reflect these. A number of interrelated issues and questions concerning future exascale 
programming models will have to be resolved to achieve the means of crafting exascale 
application codes. These include, but are not limited to: 

 How do STEM codes differ from conventional commercial codes and what can 
be learned from general commercial programming practices? 

 In what ways will exascale applications differ from past generations of HPC 
codes? 
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 How can programming models capture user intent with minimal syntactical 
burden? 

 Apps and algorithms are more restrictive than the language; how can the idioms 
of particular problems be exploited to optimize performance? 

 Can general classes of algorithms be converted to generic codes? 
 How do we do interoperability in the large? What are the ways of composing 

applications? Do DSLs offer a possible approach? 
 
Domain Specific Languages (DSL) are a promising strategy to achieving early adoption 
of exascale computing and addressing the challenges of user productivity. But the 
needed specification does not make this a general solution to the programming models 
problem. If DSLs can serve as part of the solution, some questions have to be 
addressed: 

 How transferrable across various domains is a DSL useful and across a wide set 
of applications 

 How to accelerate the creation of DSLs 
 How do we do interoperability in the large? What are the ways of composing 

applications? 
 Will DSLs solver enough problems? 
 What are the areas we know we can push it and what does the DSL need to look 

like? What are missing pieces? 
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Session VI – Research Questions for Programming Environments 
Chair: Martin Schulz, LLNL 

Charge 
In this session the participants were asked to identify the key research questions in the 
area of programming environments. In particular, they were asked to answer the 
following questions: 

• What are the key research questions in programming environments that must be 
answered by the research community before widespread development and 
adoption? 

• Is there an order and preferred method for pursuing these? 

Structure 
The participants decided to follow the list of elements needed for programming 
environments identified in the preceding breakout session (see page 18) and group them 
into a smaller number of topics to be discussed: 

• Code Generation/Compilation 
• Debugging/Correctness Tools 
• Performance Analysis/Optimization Tools 
• Resilience Tools 
• Storage Management 
• Code/Software Management and Workflows 
• Crosscuts / Overarching Infrastructure 

 
The topics of “Libraries” and “Analysis and Visualization Tools” were excluded, since 
they could not be covered adequately and would have warranted a separate workshop. 
Further, the topic of “Testbeds” was excluded, since testbeds don’t pose any research 
questions by themselves, yet all participants agreed that they would be paramount to 
have as one of the key drivers for research in this area. 
 
The rest of the session was then spent in identifying the research questions for these 
seven identified topic areas. In the end, the group did not find a preferred or priority 
order for these research questions. Answers to all of them are necessary for a 
successful exascale software stack. However, all of them address both immediate and 
longer term needs and a prioritization within each topic area should be done to establish 
this differentiation. Additionally, the group noted that we need to address these 
questions on two tracks concurrently: how can we improve support for existing codes 
and models in the near future (evolutionary), while at the same time have the support for 
new models ready when they are needed (revolutionary)? 

Research Questions 

Code Generation and Compilation 
The main area of discussion for this topic was research around “smarter” compilers. The 
main example was the need for continuously optimizing compilation and included topics 
like background (re)compilation based on performance feedback (taking it a step further 
than existing feedback based compilation) as well as to dynamically change code 
properties. The group assumed that this was likely only feasible for on-node techniques, 
although more global approaches could be of interest as well. The group also noted that 
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this could cause new research questions in debugging, as such adaptive and 
continuously changing systems make pinpointing bugs and other problems more difficult. 
Additionally, the group identified the need for faster and/or more parallel compilers as a 
research questions, especially in the light of new language extensions, heavier use of 
complex templates, etc. 

Debugging/Correctness Tools 
The group divided the area of debugging and correctness tools further into three 
subcategories: static tools, dynamic tools and approaches that require both static and 
dynamic techniques. The research questions on the static tool side focused on how to 
detect bugs and errors before codes execute, while the dynamic side centered around 
how to deal with non-determinism (How difficult and costly is it to enforce determinism 
and can we establish dynamic “off” switches for non-determinism?), how to deal with 
scale (how to automate debugging to make it easier in low-availability scenarios, how to 
scale interactive tools – both from the interaction and the data collection point of view), 
when do we need interactivity, and how to establish testing frameworks at scale?  
Further, the group identified the ability to reproduce errors at lower scale as a major 
research question. 
On the combined static/dynamic side, the group identified questions around techniques 
to identify scaling bugs before executing on large systems (not just for the applications 
themselves, but for any level of the software stack) as well as a need for developing 
techniques to help debug applications written in new task models, as developed in the 
DOE/ASCR X-Stack efforts. An additional topic of discussion was how to enable visual 
debugging, i.e., the use of visualization tools for debugging large scale problems. 

Performance Analysis/Optimization Tools 
Similarly to the area of debugging tools, the group split the area of performance tools 
into static, dynamic and hybrid static/dynamic subtopics. On both the static and dynamic 
side, the group identified questions on how to get more information from compilers and 
runtime systems respectively and how to turn this information into actionable insight as 
key questions. Additionally, on the dynamic side, questions identified included how to 
deal with performance information in light of non-determinism, variable execution and 
highly adaptive systems as well as how to include new metrics, such as energy, power, 
or reliability. 
The hybrid static/dynamic area led to a lengthy discussion and the identification of the 
following research questions: 
 

 How to create new representations for visual performance analysis? 
 Which tools are needed for detecting memory access patterns? 

o This was also seen as a good candidate for new visualization techniques 
 How to develop tools for remapping memory and re-tuning? 

o Static (before), Dynamic (for next run), Dynamic (on the fly) 
o Separate data layout from computation (late mapping) 

 How to exploit hardware support for custom memory remapping? 
o Requires detection and analysis to extract mappings (example: 2D 

memory regions) 
o What are we willing to “pay” for it? How much change in hardware can we 

push for by demonstrating its benefits? 
 How do we develop tools to evaluate precision requirements? 
 How to improve performance modeling, especially in light of adaptivity and new 

metrics? 
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 How can we create tools that provide us with “goodness” metrics for matching 
codes to architectures? 

 How to enable and ultimately exploit continuous data collection and analytics to 
study long term trends? 

Resilience Tools 
The group discussed a wide range of questions in resilience, particularly referring to 
programming environments. The key ones were: 

• How to avoid global recovery? 
– A single failure shouldn’t break the complete system  

(live recovery/migration and how to do this efficiently) 
• What abstractions are good for individual applications? 
• What abstractions are good for coupled workflows? 

– What characteristics do we want in a resilient model? 
• Incl. MPI – how to hotswap or shrink? 

• What model is useful in which applications? 
– How can we automate the geometry mapping so shrinking resources can 

be used efficiently? 
• We need global checkpoints at some point (limited job time, catastrophic 

machine failures,) - how do we optimize them? 
• How transparent should resilience be? 

– How far do/can/should/must we burden the programmer? 
– What to expose to application level? 
– How do new (tasking) models influence this? 

Storage management 
The group saw the integration of storage management into complete workflows (arbitrary 
sources and sinks, coupled simulations, integration/reaction to decisions of the resource 
managers, etc.) as a key research question that is currently unanswered. Related to 
that, the group raised the question on how the existence of on-node and/or global 
NVRAM changes this picture and how to establish the necessary APIs and usage 
abstractions for these new storage options. Further, the question was raised what the 
right I/O storage abstractions are and if files are still the right answer. 

Code/software management and workflows 
The last topic discussed in storage management also continued into this topic area: what 
are the right abstractions for I/O and storage and their flow? How can we understand the 
flow through the I/O system, tag/index data based on its properties, and establish 
provenance information? As a more general question, how can we manage large 
volumes of data? 
The topic area also led to a discussion on tools to help the code development process 
itself: how can we develop better tools to understand code complexity? While good 
commercial solutions exist in this area, they are not HPC focused, create too many false 
positives and do not scale. How can we extend these solutions to match the HPC 
needs? Further, what tools do we need to help map codes to the architectures (incl. 
accelerators) that best match their properties? 
Finally, the group posed research questions on how to integrate continuous performance 
gathering and the associated analytics into the daily workflows, including performance 
regression suites. 
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Crosscuts / Overarching infrastructure 
Additionally, the group identified a wide range crosscutting and overarching research 
questions: 

• How to develop new techniques for visual correctness and performance debugging 
and how to exploit the intersection with the DataVis and InfoVis research 
communities? How to address scaling limitations and how can we use such 
techniques to visualize the evolution of algorithms and/or data structures (at 
various levels, including the physics level, DAGs, etc.)? How can we integrate this 
into existing visualization and analytics workflows? 

• How do we interface programming environment tools with runtime systems? How 
can we efficiently get performance and debug data? How can we identify and 
control knobs to change performance properties? How can we tell the system, 
especially in the light of adaptive systems based on learning components and 
models that we are doing well right now? 

• How can we efficiently and couple tools and application components while staying 
modular? How can we match runtimes, enable computational and analysis 
steering, and interact and coordinate with resource management? 

• How can we create production quality, scalable infrastructures for visualization, 
data analysis, debugging and performance tools? How can we share infrastructure 
between those components and eventually make it a system service? How do we 
get away from hacky scripts, avoid data management through shared files? 
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