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We have entered a “golden age” of high-energy-density-
physics (HEDP) using a high-energy laser system

I2204

Summary

•	 The Omega Laser and National Ignition Facilities allow for 
a wide range of HEDP experiments for programmatic needs 
and fundamental science

–	 laboratory astrophysics, including the possibility 
of explaining the source of galactic magnetic fields

–	 planetary science: earth-like, gas giants, extrasolar

•	 HEDP opportunities would be greatly enhanced 
with a laser system with a peak intensity of a1024 W/cm2

–	 especially coupled to a high-energy laser system

•	 Two beams of OMEGA EP could be used to pump an optical 
parametric chirped-pulse beamline (EP OPAL)

–	 1.6 kJ in 20 fs; an unprecedented intensity of a1024 W/cm2 



The Rayleigh–Taylor (RT) instability in laser-driven 
targets generates large amounts of fluid vorticity*
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*K. Mima, T. Tajima, and J. N. Leboeuf, Phys. Rev. Lett. 41, 1715 (1978);
R. G. Evans, Plasma Phys. Control. Fusion. 28, 1021 (1986);
R. Betti and J. Sanz, Phys. Rev. Lett. 97, 205002 (2006).

Azimuthal magnetic fields are generated by   ne ×   Te.d d
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Magnetic-field generation has been studied 
in side-on and face-on geometries using 
the acceleration of planar targets
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Face-on probing reveals magnetic-field generation 
by the RT instability
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The number of magnetic cells decreases and the 
magnetic-cell diameter increases with time 
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The evolution of the magnetic-field spatial 
distribution is consistent with an RT bubble 
competition and merger model*
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 *O. Sadot et al., Phys. Rev. Lett. 95, 265001 (2005);  
D. Oron et al., Phys. Plasmas 8, 2883 (2001);  
U. Alon et al., Phys. Rev. Lett. 72, 2867 (1994).

**L. Gao et al., Phys. Rev. Lett. 110, 185003 (2013). E21810



Global magnetic organization occurs  
as a result of diffusive magnetic reconnection

RT bubble/spike merging

Toroidal magnetic ribbon

Larger RT bubble/spike
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Could this be the seed source for the galactic dynamo?



Numerous facilities around the world are being 
developed to increase peak laser intensity and improve 
diagnostics of dynamic materials properties
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•	 Extreme Light Infrastructure 
(ELI) in Europe

•	 MaRIE at Los Alamos

•	 Upgrade to Materials 
in Extreme Conditions 
(MEC) at Stanford

•	 Dynamic Compression 
Sector (DCS) at Argonne 
National Laboratory

•	 Ongoing high-intensity 
laser development around 
the world
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*G. A. Mourou, “Extreme Light: Bridging Optics and Fundamental 
High 	Energy Physics, First Steps Toward Zeposecond and Zettawatt 
Science,” presented at the Institute of Optics Colloquium, 9 March 2015.



A kilojoule-class femtosecond laser with an intensity 
of a1024 W/cm2 would open new physics frontiers

This laser would be a world-class tool for  
fundamental science at new intensity regimes.
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A combination of kilojoule femtosecond, picosecond, 
and nanosecond beams will make a stellar materials 
science facility
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•	 Nanosecond beams will 

–	 shock compress materials for Hugoniot equation-of-state (EOS) studies

–	 ramp compress materials for off-Hugoniot EOS studies

•	 Picosecond beams will be used alone or with nanosecond beams 
to isochorically heat materials

–	 either before or after compression for off-Hugoniot EOS studies

•	 An ultra-intense laser will generate intense x-ray and particle beams 
to provide unique probes of compressed materials

–	 neutron and ion beams can be used for diffraction studies

–	 intense line or Ka radiation from femtosecond laser–target interactions 
for radiography and diffraction

–	 betatron sources provide broad and smooth spectra for opacity 
and x-ray absorption fine structure (EXAFS) studies



A kilojoule-class femtosecond laser would be a bright 
continuum x-ray source at proton energies of 100 keV 
and beyond
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•	 Implosion-based continuum 
sources* are not available 
above ~20 keV

•	 Betatron sources show promise 
to produce tens of keV quasi-
continuum x-ray sources**

•	 A spatially coherent, 
quasi-continuum, 10-keV x-ray 
source with a 2-J, 30-fs laser 
was recently demonstrated†
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   *B. Yaakobi et al., Phys. Rev. Lett. 95, 075501 (2005).
 **E. Esarey et al., Phys. Rev. E 65, 056505 (2002).
   †S. Kneip et al., Nat. Phys. 6, 980 (2010).



At 1024 W/cm2, the quiver energy of an electron 
is ~100 GeV and that of a proton is ~50 MeV
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•	 The quiver, or ponderomotive, energy is 
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•	 The electrons are highly relativistic, while the protons are weakly so

•	 Energetic electron beams would be produced in laser–target interactions

•	 High-energy protons would be produced by less direct processes, 
but schemes are available to generate protons to much higher energies 
than that available with sheath-field acceleration (current limit ~60 MeV)

•	 Radiation pressure acceleration (RPA) becomes important when the foil 
thickness is decreased to approximately the laser skin depth*

–	 the laser accelerates all of the target electrons within the focal 
volume to modest energies, accelerating all the ions in this region 
by space-charge forces 

–	 estimate ~30 GeV/nucleon with 1.6 kJ in 20 fs
*T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004); 	
A. Macchi et al., Phys. Rev. Lett. 94, 165003 (2005).



A kilojoule-class, 20-fs laser would provide the brightest 
source of attosecond (as = 10–18 s) pulses
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•	 Attoseconds are the natural time scales 
for electrons in atoms and molecules

–	 the “classical” orbital period 
of an electron in a hydrogen atom

. eV as13 6 300&'~ x= =

–	 the time it takes light to cross a water 
molecule (fastest information transfer)

.c asL 0 5&x=

–	 characteristic velocities of orbital 
electrons involved in chemical 
reactions are ~ 0.005 c

0.005 c 100 500 asL &x += ^ h

Attosecond pulses probe electron dynamics in atoms 
and molecules—chemistry’s natural time scale.
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The OMEGA EP Laser System could be used to pump 
a 75-PW, 20-fs optical parametric chirped-pulse–
amplification (OPCPA) beamline: EP OPAL
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Two OMEGA EP beamlines would be used, leaving two ns/ps 
beamlines for pump–probe and other experiments.
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We have entered a “golden age” of high-energy-density-
physics (HEDP) using a high-energy laser system
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Summary/Conclusions

•	 The Omega Laser and National Ignition Facilities allow for 
a wide range of HEDP experiments for programmatic needs 
and fundamental science

–	 laboratory astrophysics, including the possibility 
of explaining the source of galactic magnetic fields

–	 planetary science: earth-like, gas giants, extrasolar

•	 HEDP opportunities would be greatly enhanced 
with a laser system with a peak intensity of a1024 W/cm2

–	 especially coupled to a high-energy laser system

•	 Two beams of OMEGA EP could be used to pump an optical 
parametric chirped-pulse beamline (EP OPAL)

–	 1.6 kJ in 20 fs; an unprecedented intensity of a1024 W/cm2 




