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Photoionization in accretion 
disks and molecular clouds 

Star-forming molecular clouds and the platforms used to study them offer 
access to multiple frontiers and challenges in plasma physics research 

Pillars are common near bright O/B stars. How pillars form is still 
TBD. 

Photoionization in accretion 
disks and molecular clouds 

Long duration, directional 
laboratory x-ray sources 

Ablatively confined hydrodynamic flows 

Pillars, comets, and deeply nonlinear hydrodynamic flows  
Magnetohydrodynamic flows 

Hydrodynamic instabilities due to directional illumination 
Cloud crushing and star formation 

Radiative collapse and star formation 

Stellar outflows and bow shocks 
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Summary 
Eagle Nebula / pillars 
Laser facilities (NIF & Omega EP); hohlraums 
Astrophysical modeling / comparison to observations 
Cometary / other models / RT / magnetic fields 
Directional instabilities / TR / DR 
Photoionization experiments / accretion disks 
Long duration directional multi-hohlraum source 
Omega EP high density pillar EP results  
NIF high density pillar results 
Future proposals / low density comets / magnetic fields 
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NIF Discovery Science Eagle Nebula studies models for the formation of pillar 
structures in star-forming molecular clouds, in particular the ‘cometary’ model 

Laboratory astrophysics experiment The Eagle Nebula 
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The Eagle Nebula experiments use two large laser facilities capable of 
producing ablating ionized plasmas 

Omega EP laser  
•! 4-beam 
•! 16 kJ 
•! Eagle experiments prototyped 

National Ignition Facility (NIF) laser 
•! 192-beam 
•! 1.8 MJ 
•! Inertial confinement fusion (ICF) 

and fundamental science 

Hohlraum (Au radiation cavity) 
•! converts 0.35 !m laser energy to 

soft x-ray blackbody (100-300 eV) 
•! ICF applications 

•! Laser pulse lengths: 1-10 ns (1e-9 s) 
•! Target scales: 0.1–5 mm 
•! Temperatures: 1 eV (1 ev = 11605 K) to a few keV 
•! Hydrodynamic velocities: 1 km/s 
•! Typical target conditions: H fully ionized or Fe stripped to K shell 

ICF 
Hohlraum x-rays compress capsule 
of deuterium-tritium fuel to fusion 
conditions 
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Scientific basis for molecular cloud studies: our astrophysical simulations suggest 
that a ‘cometary’ model is reasonable for the famous pillars of the Eagle Nebula 

08/03/05 Mol. Cl. Struct. U Maryland JK2 
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•! Overall column density and velocity 
profile reproduced. 

•! Actual initial cloud was likely more 
clumpy and filamentary 

Column 
density 
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Other physics could explain the formation of the Eagle pillars 

08/03/05 Mol. Cl. Struct. U Maryland JK2 

Modeling suggests Rayleigh Taylor 
instability is strongly ‘ablatively 
stabilized’ 

A pre-existing column of material 
could be shadowed behind a 
dense clump 

Williams et. al. MNRAS 327, 788 (2001)  

But actually shrinks; and velocity 
and density profiles not 
consistent with Eagle. 

Magnetic fields are likely to play a 
role depending on strength and 
orientation 

Spitzer, ApJ 120, 1 
(1954); Frieman, 
ApJ 120, 18 (1954) 

Mizuta (2005) 

Kane (2006)  
Magnetic fields could be studied in 
laboratory astrophysics experiments. 

J. Mackey and A. J. Lim, MNRAS 
403, 714 (2010); 412, 2079 (2011) 
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Additional physics frontier: where illumination is highly directional (from a 
star), exotic hydrodynamic instabilities may occur 

•! These instabilities can occur in compression, not just in acceleration (unlike RT). 
•! They could potentially be studied in laboratory illumination astrophysics 

experiments using long duration directional. 

‘Tilted Radiation’ (TR) instability ‘Directed Radiation’ (DR) short-wavelength instability 

Time 

bullets’ 

tilted 
incident 
radiation 

Can push surface waves, which can break. 
(Axford, 1964, Ryutov, 2003).  

x (cm) 

•! Seen in astrophysical and other 
simulations (Kane, 2003), R. 
Williams (2001) 

•! Related to Landau-Darrius? 

Time 

directional 

With multi-directional 
illumination, the 
short wavelengths 
do not grow 

diffuse 
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Plasma physics challenge: laboratory astrophysics exeriment studying Eagle 
hydrodynamics require a long duration (by laser standards), directional drive 

We developed a novel, multi-hohlraum 160 eV x-ray source. 
Each holraum is laser-driven for only 10–15 ns until it begins to 
fill with gold plasma, then the next hohlraum is driven.  

By 15 ns, even a large (5 mm diameter) hohlraum 
fills with ablated gold plasma, preventing the laser 
beams from entering the hohlraum, and choking off 
the x-ray drive. 

Time (ns) 
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rw

at
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Typical long pulse drive 
for a current NIF 
experiment 

13 ns main 
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beams 
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Cross section of 
hohlraum at end of 
typlaser drive 
showing filling 
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generate a few ns of 
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science package 
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Frontier: the long duration of the new drive also makes it useful for 
laboratory astrophysics studies of photoionization  

08/03/05 Mol. Cl. Struct. U Maryland JK2 

R.C. Mancini et. al., “Accretion disk dynamics, photoionized plasmas and stellar opacities” , Physics of Plasmas 
16, 041001 (2009). 
 
Liedahl, D.A. 2005, “Resonant Auger Destruction and Iron Ka Spectra in Compact X-ray Sources,” in X-ray 
Diagnostics of Astrophysical Plasmas, ed., R.K. Smith, (American Institute of Physics), p. 99. 

In the limit of strong X-ray flux and low density, the atomic kinetics rate equations are greatly simplified and one 
can validate, in relative isolation, the photoionized plasma equilibrium driven by photoionization and radiative and 
dielectronic recombination in the absence of multibody effects. 

X-ray 
drive 

Ti foil 

CH tamp 

X-ray-heated Ti 
expands 100 x 

Time 
The approach to 
conditions where 
photoionization dominates 
collisional ionization and 
equilibrium is achieved 
requires 20+ ns x-ray 
drives, and even better, 
40+ ns drives 

Expansion Expansion 
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The scaling between the Eagle Nebula (parsec, 100 kyr) and laboratory 
hydrodynamics (mm, 50e-9 s) has been established 

References 
 
D.D. Ryutov and B.A. Remington, "Scaling 
astrophysical phenomena to high-energy-density 
laboratory experiments," Plasma Phys. Control. 
Fusion 44, B407 (2002). 
 
D.D. Ryutov, B.A. Remington, H.F. Robey and R.P 
Drake, Phys.Plasmas 8, 1804 (2001) 

!! The thickness of the absorbing layer near the surface of the target is small compared to other geometrical 
dimensions, and details of the absorption processes essentially drop out of the problem.  

!! The density and structure of the clump drop out since for the cometary model the clump mainly acts to 
•! Hold back the head of the comet. 
•! Provide a reservoir of material that releases down to a low density determined by the drive flux. 

Under such circumstances, the similarity between the two systems requires a similar value of the parameter  
 
 
 
where pabl, !*, L* and "* are the characteristic ablation pressure, density, scale length, and time for evolution. As 
shown in the following table, the scaling is reasonable. 

Parameter Eagle pillar Laboratory experiment 

L* (cm) !"#$%& '($&

pabl (dyne cm-2) )"*'+& $,#$'&

!* (g cm-3) )"*-$& $',*!&

"* (s) .,#$-& $,*'/&

A !"##$ !$

A = ! *

L*
pabl
*
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1st Eagle experiments: low energy Omega EP laser shots prototyped the new long 
duration directional source and demonstrated application to scientific packages 
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At 20 x higher energy, the 1st NIF laser Eagle shot demonstrated the full-
scale source and formation of a dense, easily imaged ‘shadowing’ pillar 
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Frontier: proposed new experiments would determine column density and velocity 
profile in a low density cometary tail instead of a dense ‘shadowing’ pillar 

Eagle cometary model 
science package 
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Frontiers: these experiments can access other physics of interest in star-forming 
molecular clouds: pre-existing magnetic fields, stellar winds, and radiative collapse 

A 2T coil-generated background 
magnetic field could alter the 
laboratory pillar dynamics 
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Klein, R. I., et al., ApJS 
127, 379 (2000);  
Robey H. F. et al. PRL 
89, 085001 (2002) 

D. R. Farley et. al., 
PRL 83, 1982  
(1999) 
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NIF Discovery Science Eagle Nebula studies models for the formation of pillar 
structures in star-forming molecular clouds, in particular the ‘cometary’ model 

Laboratory astrophysics experiment The Eagle Nebula 
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Photoionization in accretion 
disks and molecular clouds 

Star-forming molecular clouds and the platforms used to study them offer 
access to multiple frontiers and challenges in plasma physics research 

Pillars are common near bright O/B stars. How pillars form is still 
TBD. 

Photoionization in accretion 
disks and molecular clouds 

Long duration, directional 
laboratory x-ray sources 

Ablatively confined hydrodynamic flows 

Pillars, comets, and deeply nonlinear hydrodynamic flows  
Magnetohydrodynamic flows 

Hydrodynamic instabilities due to directional illumination 
Cloud crushing and star formation 

Radiative collapse and star formation 

Stellar outflows and bow shocks 




