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Turbulence: Fundamental Yet Practical 

• Fundamental to understanding the natural plasma environments 

– Astrophysical  

– Heliospheric  

– Magnetospheric 

– Ionsopheric 

 

• Practical importance in controlling the plasma environments in  

– Laboratory devices 

- Tokamaks heating and confinement, etc. 

– Near-earth space  

- Satellite lifetime 

- Space weather 

 

 
Turbulence Pervades Most Plasma Domains 
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State-of-the-Art 

• Dimensional analysis (Kolmogorov) 

• Limiting cases of turbulence 

– Strong coherent processes 

- NLS equation, solitons, etc. 

- Trapping, frequency chirping, triggered emission 

– Weak Incoherent processes  

- Ensemble of waves with random phase 

- Hydrodynamic (Wave-wave interactions) 

- Maxwellian distribution assumption 

- Kinetic (Wave-particle interactions) 

- Nonlinear Landau damping 

- Quasilinear diffusion 
 

• Low ( i) or intermediate (i  e) frequencies 

– Cross over in inhomogeneous environments 

- Boundary layers 
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The Frontier 

• The challenges are in understanding the overlap regions 

– Strong to weak 

– MHD to kinetic (meso-scale) 

– Electrostatic to electromagnetic 

– Homogeneous to inhomogeneous 

– Low ( i) to intermediate (i e) frequencies 

– Laboratory to natural 

 

• Need coordinated approach  

– Analytical  

– Numerical 

– Experimental  

- Laboratory 

- Space 

Turbulence Characteristics in Hybrid Domains Least Known 
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• Consider a  3-species (ion, Electron, and dust) plasma 
 

• For short wavelength (kld >> 1) recover Alfven and magnetosonic  

  waves with minor frequency corrections 

Alfven branch Magnetosonic branch 

• For long wavelength (kld << 1) two new branches appear 

2 2 2 2 2( )r z Ak k V    Alfven-Magnetosonic Hybrid Wave 

Similar to Langmuir waves  
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Strong Turbulence for Long Wavelength 

 Similar to Langmuir turbulence  

2

1s

22

1s
1s v

2
v

t

v

x

V
i

r

A













00

)(
B

B

n

n

cnm

ZeBn
r

d

d
r

ei

d 
 

2

1s

22

1s2

2

11s v

2
v

v

t

v

x

V

V
i

r

A

A

s

r











•  Fast time-scale is r ( ≡ ωpe ) 
 

• Slow time-scale is dust kVA ( ≡ kcs) 

•  Long time average: t  >> 1/ r ,1/ d  
 

•  Nonlinear frequency shift, ω , due to 

    ponderomotive force 

• The nonlinear Schrodinger Equation 
 

• Solutions: Solitons 

Unlike Langmuir Waves no Dissipation as Wavelength Approaches ld  
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Long wavelength 

kld<1 

Short wavelength 

kld >1 

Strong turbulence Weak turbulence 

• Strong turbulence dominates  

   for k << kd  but breaks down    

   for k ⋍ kd 

 

• Collapse towards kd pumps  

   weak turbulence for k >> kd 
 

• Peak in energy density at kd 
 

• Typical structure scale size ~ ld kd 

kd = ld

-1 = Wr /VA

)( 2222
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Weak Turbulence for Short Wavelength 

k 
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Molecular Clouds 

 Astrophysical Relevance 

 

• kVA ~
 Ωr  defines structure (filament)  

  scale size 
 

•  ld ~ VA / Ωr ~ (c /  pi)(ne / Znd)(ni / ne)
1/2 

 

•  ne ~ 10-3cc, nd ~ 10-8 cc, c /  pi~ 109 cms 

 

• ld ~ 1014 cms ~ 10 AU 

 
 Artist Rendition Based on Observations 

Astrophysical Turbulence and Transport: Cascade and/or Strong Turbulence? 
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 Strong        Weak Turbulence 
• Οbservation in solar wind 

– Turbulence energy spectrum non-Kolmogorov 

– Appearance of spectral steepening at k i ~ 1 

  

• Ongoing debate:  

– Origin of spectral steepening for shorter 

     wavelengths 

 

• Common belief:  

– Spectral evolution dominated by Landau damping   

– Strong turbulence prevails at all scale sizes 
 

 

• No good reason to reject weak turbulence for k i ≥ 1  

     in collisionless SW if Landau damping is negligible  

     compared to NL rates 

Inertial ?? Dissipative 

From Alexandrova et al.  

PRL (2009), Cluster data.  

Can Solar Wind Maintain Sufficiently Small df0e/dv|| to Ignore Landau Damping? 

MHD to Kinetic: Heliospheric Plasmas 
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Evolution of  f0e  in Solar Wind 

• Stable distributions can Landau damp waves and create plateau 

Plateau in Electron Distribution Can be Established on SW Transit Time Scale 

• Electron density redistributed in 3 components:  

  Cold, Plateau and Maxwellian; in fractions  c,  m,  t 

• In SW Coulomb collision time and free path are long (~105 sec, ~1AU) 

- Can not thermalize within SW transit time 

• Evolution of distribution function given by quasi-linear equation    

αc ,VA αm,Vm αt,Vte 
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[Rudakov et al., PoP, 2011, 2012] 

Validation of the Idea 
 

Solution of Diffusion Equation  

for observed spectrum 

The Idea 



  Ganguli, DoE Workshop, Jun-Jul 2015  11 

Solar Wind Turbulence: Schematic Model 

[Rudakov et al., PoP, 2011] 

Incoming 
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Does the MHD Turbulence Morph into Weak Turbulence? Or Do They Coexist?  

(b) W-W Coalescence creates waves with  
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(a) W-P Scattering create a wave  

with same  , larger |k⊥| and smaller k|| 

  

  

 
k 2,w2

e- 

  

  

 
k 1,w1 ~ w2

⦁ 

K||c /ωpi 

K┴c /ωpi 
 

 

 ~ k|| k⊥ = Const 

(c) W-P scattering once again creates a 

Wave with 2 , smaller k⊥ and larger k|| 

(d) The cycle repeats to create 

waves with 4  and 4 k|| and so on 

  

  

 
k 2,w2

  

  

 
k 1,w1

  

  

 
k 3,w3

(e) For short enough wavelengths W-W coalescence  

can eject waves into the dissipation range 
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Satellite Lifetime Inversely Proportional to Trapped Electron Population  

• Increasing k⊥ ⇒ enhanced dissipation (~ k⊥
2) 

 

• Wave dissipates as k⊥c/ pe > 1  
 

• prop ~  int, during which k⊥c/ pe < 1 

• Increasing k⊥ ⇒ enhanced NL scattering (~ Wk⊥
6) 

 

• k⊥c/ pe < 1 maintained by NL scattering 
 

•  int ~  turb >> prop, NL scatter keeps k⊥c/ pe < 1 

 

 

Without Nonlinear Scattering With Nonlinear Scattering 

Cyclotron resonance time ( Int) given by (  – k||V||ne(r))⋍ 0 

Electrostatic to Electromagnetic 

Fate of lightning generated whistlers in the ionosphere 

   =  LH 
L = 1.2 

L = 1.2    =  LH 

[Ganguli et al., PoP, 2010; Crabtree et al., PoP, 2012] 
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• Storm-enhanced radiation belts can 
return to ambient values sometimes 

– Not always. Why? 
 

• Quasi-linear theory cannot explain this 
behavior 

 

 

  

>106 

>105 

104 

Natural Electron Flux (e-/cm2/s)  

 

days 

Consequences On Radiation Belts:  

Control of Trapped Population 

Haloween 2003 Storm, SAMPEX 

Baker et al, Nature, 2004 
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• Bounded laboratory devices cannot exactly reproduce development of 
turbulence in unbounded natural systems 

– But critical physics can be examined in controlled laboratory conditions 

– Lab experiments are repeatable and initial conditions are known 

 

• Natural observations of turbulence are generally in a developed state 

– Initial conditions are unknown 

 

• Active experiments in space provide knowledge of both initial and final 
states in turbulence evolution for a unbounded system 

– Both cause and effect is necessary to validate the physical process 

Induce Cause Measure Effect 

Deduce 

NL Proceses 

Laboratory to Space 
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Example 1: 

Electrostatic to Electromagnetic Conversion 

Frequency Spectrum Wave Vector Spectrum 

EM ES 

Nonlinear Conversion of ES Lower Hybrid Waves into EM Whistler Waves 

B 

plasma 

NRL Space Chamber 

• Laboratory test limited by band width of 

waves that can be generated in a 

laboratory device   

 

• Boundary conditions may not be exactly 

as in space   

 

• Accurate measurements and repeatability 

in laboratory a major benefit to 

understand the detailed physics   

[Tejero et al., PoP, 2015 (in press)] 
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Example 2: 
Coherent Processes Embedded in Turbulence 

Whistler Mode Chorus 

Triggered 

Emission 

Whistler Chirping in NRL Space Chamber 

(n=0 Toroidal Mode Number) MHD Chirping in JET 

• Frequency Chirping is a ubiquitous 

nonlinear plasma phenomenon, generally 

thought to be due to strong nonlinear wave-

particle interaction.   

 

• Most current models of these phenomenon 

have strong assumptions on locality of 

mode structure, coherency of mode, and 

adiabaticity of nonlinear particle motion.   

 

• The frontier is to consider these 

phenomenon in more general, turbulent 

settings.   

Triggered Emission in Tokamaks and Radiation Belts 

[Tejero et al., Bull APS/DPP, 2014] 
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Barium 

Shaped 

Charge 

Sounding 

Rocket 

Example 3: 
Active Turbulence Experiment in Space 

• Perform rocket-based experiment to 
characterize nonlinear scattering in 
space  
 

– Seed intense lower hybrid waves by 
energetic ion ring beam  

– Enable nonlinear scattering of the LH 
waves into whistler/magnetosonic waves 

– Measure amplitudes of scattered 
whistler/magnetosonic waves  

 

• Experiment necessary 

– To understand weak turbulence 
properties of radiation belts 
 

 

Space Measurement of a Rocket-Released Turbulence (SMART) 

600 km 
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Measure nonlinear effects in radiation belt 

Induce VLF turbulence in ionosphere 

[Amatucci et al., Bull APS/DPP Meeting, 2014] 
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Ionized Neutral Atoms Form Ring Beam Distribution Release Neutral Gas Perpendicular to B0 

Generation of EM Waves Through Nonlinear Scattering by Thermal Particles  

vx 

vy 
vz 

Maxwellian Background 

O+, H+, and Electron  

Ring Distribution 

Released Material  

B0 

Kinetic Energy of Neutrals 

↓ 

Anisotropic Plasma Distribution 

↓ 

Electrostatic Turbulence at LH & Ion Cyclotron Frequency 

↓ 

Nonlinear Scattering by Plasma Particles 
↓ 

Electromagnetic Turbulence  

Essential Physics to be Gleaned 

500 – 600 km 
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Open Questions 

• Is plasma turbulence either strong or weak? Can the two types of 
turbulence coexist with spatial and temporal scale separation or overlap in 
meso-scales? 



• What is the criterion for seamless transition of hydrodynamic to kinetic 
nature of turbulence in terms of scale size of plasma fluctuations? 

 

• How can nonlinear and nonlocal aspects of plasma turbulence be 
addressed in the same analytical framework? 

 

• Can plasma turbulence be controlled, mitigated, or suppressed through 
active mitigation techniques?   

 

• Can plasma turbulence be artificially generated and harnessed towards a 
specific goal? 

 

 
 


