

Network Research Problems and Challenges for DOE Scientists

DOENET2025

February 1-2, 2016 Introduction to DOE Networking Richard Carlson Program Manager richard.carlson@science.doe.gov

Talk Summary

- DOE Scientists rely heavily on a robust, reliable, and performant network
 - Science drivers HEP, BES, BER, ...
- DOE supports long-term fundamental research that may take years before investment returns are realized
 - Globus, Fastbit, ADIOS, Adaptive Mesh Refinement
- DOE will partner with Research and Educations networks to deploy advanced technologies without waiting for Vendors by-in
 - Software Defined Networking and Exchange Points
 - Previous network research activities include
 - TCP Congestion Control
 - OSCARS/Terapath/Lambda Station
- Workshop goals
 - Identify problems and challenges
 - Avoid talking about potential solutions
 - Think outside the box

DOE/SC - ASCR

DOE and Office of Science Budgets

Department/Off ice/Division	FY14 Enacted	FY15 Enacted	FY16 President's Request	FY16 Enacted	Change between FY15 & FY16
Department of Energy	27,182.0	27,402.4	29,923.8	29,717.3	+8.4%
Office of Science	5,066.4	5,067.7	5,339.8	5,350.2	+5.6%
ASCR	478.1	541.0	621.0	621.0	+14.8%
BES	1,711.9	1,733.2	1,849.3	1,848.7	+6.7%
BER	609.7	592.0	612.4	609.0	+2.9%
FES	504.7	467.5	420.0	438.0	-6.3%
HEP	796.5	766.0	788.0	785.0	+3.8%
NP	569.1	595.5	624.6	617.1	+3.6%
ARPA-E	280.0	280.0	325.0	291.0	+3.9%

All figures in millions of U.S. Dollars

ASCR at a Glance

Relevant Websites

ASCR: <u>science.energy.gov/ascr/</u>

ASCR Workshops and Conferences:

science.energy.gov/ascr/news-and-resources/workshops-and-conferences/

SciDAC: www.scidac.gov

INCITE: science.energy.gov/ascr/facilities/incite/

Exascale Software: <u>www.exascale.org</u>

DOE Grants and Contracts info: science.doe.gov/grants/

Fundamental Scientific Research

- Applied Mathematics: Algorithms and software to solve complex science problems;
- Computer Science: Advanced Operating Systems, runtime architectures, and analysis methods to achieve exascale based science;
- **Computational Partnerships:** CoDesign to pioneer the future of scientific applications;
- Next Generation Networks for Science: Enabling the future of collaborative and distributed science

World Class Facilities

- High Performance Production Computing for the Office of Science
 - Characterized by a large number of projects (over 400) and users (over 4800)
- Leadership Computing for Open Science
 - Characterized by a small number of projects (about 50) and users (about 800) with computationally intensive projects
 - Cori, Summit, and Theta deployments in 2016/2017
- International Networking– ESnet
 - 44 x 100 Gbps terrestrial links, 340 Gbps transatlantic
 - 400 Gbps Terrestrial links in 2017/2018
- Investing in the future R&E Prototypes

ESnet Footprint and Traffic

Extreme Scale Science is Causing a Data Explosion

Genomics

Data Volume increases to 10 PB in FY21

High Energy Physics (Large Hadron Collider) 15 PB of data/year

Light Sources

Approximately 300 TB/day

Climate

Data expected to be hundreds of 100 EB

Driven by exponential technology advances

Data sources

- Scientific Instruments
- Scientific Computing Facilities
- Simulation Results

Big Data is part of Big Compute

- Using Big Data requires processing (e.g., search, transform, analyze, ...)
- Exascale computing will enable timely and more complex processing of increasingly large Big Data sets

"Very few large scale applications of practical importance are NOT data intensive." – Alok Choudhary, IESP, Kobe, Japan, April 2012

Computationally Intensive - Materials Genome

Computing 1000× today

- Key to DOE's Energy Storage Hub
- Tens of thousands of simulations used to screen potential materials
- Need more simulations and fidelity for new classes of materials, studies in extreme environments, etc.

Data services for industry and science

- Results from tens of thousands of simulations web-searchable
- Materials Project launched in October 2012, now has >3,000 registered users
- Increase U.S. competitiveness; cut in half 18 year time from discovery to market

Collaboratively Intensive – Material Structures

Computationally Intensive - Climate change analysis

Simulations

- Cloud resolution, quantifying uncertainty, understanding tipping points, etc., will drive climate to exascale platforms
- New math, models, and systems support will be needed

Extreme data

- "Reanalysis" projects need 100× more computing to analyze observations
- Machine learning and other analytics are needed today for petabyte data sets
- Combined simulation/observation will empower policy makers and scientists

High-Speed File Transfer, Synchronization, and Sharing with GridFTP and Globus Online

• Problem

- High-speed collaborative science and modern DOE facilities producing big data need to share large numbers of files rapidly, reliably, and securely over long distances
- Examples: High-energy physics must distribute 10+ PB worldwide, climate science produces 100 TB now, 10 EB soon; light sources can produce 500 TB/day

• Solution

- (a) GridFTP protocol, high-performance Globus implementation; 10-100x speedup vs. existing methods; also provide reliability and security
- (b) Globus Online, powerful cloud service for research data management, slashing expertise needs for file movement while enhancing reliability
- Efficient software: GridFTP from globus.org (>1 PB moved per day);
 Globus Online at globusonline.org; two R&D 100 Awards

• Impact

ENERGY

Science

- LHC Higgs discovery: Globus GridFTP moves much of the data among 200 sites worldwide
- Globus Online adopted by major DOE and NSF facilities: NERSC, ALCF, OLCF, APS, ALS, ...
- Testimonial: "I moved 100 7.3 GB files tonight in about 1.5 hours. I am very impressed Globus Online is the most beneficial grid technology I have ever seen." – Steven Gotllieb, Indiana

Collaboratories projects for climate and		SciDAC-1 ESG / PPDG		GridFTP protocol define in Grid Forum			Globus ed GridFTP v2 n		SciDAC-2 CEDPS		Parallel	HPSS support		Globus Online ESnet released				Higgs at LHC Globus			
199	physics 9 2	2000	Glo GridF 20	bus TP v1 01	20(02 20	03 20)04 	Ope Science 200	en e Grid 05	200	06 20	transfers	s 108 :	Dat 200	ta Trans Nodes 9 20	sfer 10 2	Grid > 1 Pl 2011	IFTP B/day 20	0 10,0(12	nline)0 users 2013
Ţ		U.S. 0	EPARTME	ENT OF	. (Office of															

Portable Programming With MPI and MPICH

- Problem
 - Before MPI, development of parallel programs was stalled; application writers could not commit to a moving target approach to programming.
- Solution
 - Computer scientists worked with parallel computer vendors and application developers defined a standard programming interface: MPI (Message Passing Interface).
 - Argonne computer scientists developed the first complete implementation, MPICH, helping to promote adoption of the standard.
 - DOE support over the last 15 years has enabled MPICH to scale to larger and larger machines, allowing applications to scale as well.
- Impact
 - Nearly all large-scale parallel scientific applications, in all areas of computational science, are written either for MPI directly or for a library in turn implemented in MPI.
 - 14 of the 15 largest machines in the world run MPICH

MPI-3 Forum

Standard

Hvbrid

Programming

Multithreading

FastBit - Efficient Search Technology for Data Driven Science

• Problem

- Quickly find records satisfying a set of user-specified conditions in a large, complex data set
- Example: High-energy physics data –find a few thousand events based on conditions on energy level and number of particles in billions of collision events, with hundreds of variables,
- Solution

17

- Developed new indexing techniques and a new compression method for the indexes, achieved 10-100 fold speedup compared with existing methods
- Efficient software implementation: available open source from http://sdm.lbl.gov/fastbit/ (1000s of downloads), received a R&D 100 Award
- Impact
 - Laser Wakefield Particle Accelerator data analysis: FastBit acts as an efficient back-end for a visual analytics system, providing information for identifying and tracking particles
 - Combustion data analysis: FastBit identifies ignition kernels based on user specified conditions and tracks evolution of the regions
 - Testimonial "FastBit is at least 10x, in many situations 100x, faster than current commercial database technologies" – Senior Software Engineer, Yahoo! Inc

			Binn	ing & Multi-I	evel Gi	id Collect	Query or Driven	BioSolve Use Begin	IT ns		
WAH compression research begins		WAH published	Add STAR	itional Spee Combust	· Wo dup WAH Patent ion ↓	n Best Pa @ ISC	per Vis Theoretical Analysis Published	Software Released	Yahoo	Spatial J ⊳! Use jins ↓	oin (Fusion)
1999 	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010

Looming Network Protocol Issues

- Scientific Communities Demanding Robust and Reliable Network Infrastructure
 - All Labs are multi-homed
 - Redundant paths via ESnet backbone
 - Separate connections to commercial and REN networks
 - Increased Demand for advanced services
 - Mix of Packet and Circuit Switched network
 - Mix of Optical and Electrical network
 - OSCARS on-demand circuits in daily use
- Diverse mix of traffic generated by different Science Communities
 - End-to-End bulk data transfers dominate
 - Complex/Interactive Supercomputing workflows on the horizon
 - Increase in Streaming Experimental/Observational data

Looming Transport Protocol Issues

- Performance requires lossless network infrastructure
 - Today ESnet engineers require 0% loss over the entire
 E2E path for acceptable performance
 - Current transport protocols have non-linear response to loss
- Data Reliability and Integrity at 100 Gbps and beyond
 - Data corruption and bit flips must be detected and/or corrected
 - Maintaining throughput over highly Parallel and multipath network links

Additional Considerations

- Security and integrity of sites, hosts, and nodes must be built-in instead of added on as an afterthought
- Measurement, Monitoring, Troubleshooting, and Operating the network must also be designed in from the start

Multi-Domain Realities

- ESnet serves the DOE science community
 - Peers with other REN's to reach individual scientists
 - 80% of the traffic enters or leaves the ESnet infrastructure
- Campus and Regional networks play a major role in the U.S.
- National networks play a major role in the global science community

Growing Community of Domain Scientists

 The HEP community was experienced and sophisticated enough to create in-house networking expertise

 Other science communities do not have this cohesion or the knowledge needed to duplicate this activity

Next Generation Networking for Science

- The ASCR mission is to conduct the research needed to develop new knowledge in Applied Math, Computer Science and Networking
- The NGNS research activities include:
 - Accelerate the development and deployment of technologies, protocols, tools, and high level services needed to support globally distributed science communities
 - Develop high-fidelity models and simulations that accurately describe and predict the observed behavior of scientific workflows, applications, computers and networks

I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

Workshop Agenda

Monday, February 1, 2016

7:30 - 8:30 Continental Breakfast and Registration 8:30 - 9:00 Welcome and Introduction Rich Carlson, U.S. Department of Energy 9:00 - 10:00 Panel Presentations: Network Frontiers for DOF 10:00 - 10:30 Break Panel Q&A Session 10:30 - 11:45 11:45 - 12:00**Break-out Session Change and Process** 12:00 - 1:00 Lunch 1:00 - 2:30 Break-out Session 1: Discussions - Short Term [Terabyte/hour single application bulk data xfer] 2:30 - 3:00 Break-out Session 1: Report Out 3:00 - 3:30 Break 3:30 - 5:00 Break-out Session 2: Discussion - Medium Term [Petabyte/hour single application bulk data xfer] 5:00 Adjourn

Workshop Agenda

Tuesday, February 2, 2016

- 7:30 8:30 Continental Breakfast
- 8:30 9:00 Break-out Session 2: Report Out
- 9:00 10:30 Break-out Session 3: Discussion Long Term [Exabyte single application bulk data xfer]
- 10:30 11:00 Break
- 11:00 11:30 Break-out Session 3: Report Out
- 11:30 12:00 Conclusions and Next Steps
- 12:00 1:00 Lunch
- 1:00 4:30 Report Writing

Workshop Goals

- Identify the basic network/transport protocol research issues that inhibit or block scientists from effectively using the network
 - Terabyte/hour to Exabyte/hour bulk data transfers on a routine basis while supporting a broad mix of other traffic
 - Interact with supercomputer simulation and experimental data analysis in real-time
 - Report faults and/or errors in a manner suitable for scientists and network operators
- Avoid discussions about current/proposed solutions
 - Clearly define the problem, not the solution
 - Think out-side the box!

Conclusions

- DOE needs a robust and active Network Research program to meet the emerging needs of multiple Science Communities
- Projects will range from short term (1-3 years) to long term (10+ years)
- Basic research into network and transport protocols is required
- Managing and providing understandable information to scientists and engineers is also essential

