"Genomes, Genetics, and Diversity"

New sequencing technologies are emerging driven by human biomedical
applications. This talk will introduce the characteristics of these new
datasets, and outline the computational hurdles in both converting the
raw data into useful genetic information, and in answering questions

related to population structure, dynamics, and evolution.
Dan Rokhsar
DOE Joint Genome Institute
UC Berkeley Center for Integrative Genomics



The big picture

 How does genetic variation, in concert with
the environment, lead to “phenotypic”
variation?

— Phenotype = behavior of the biological system
(morphology, disease, efficiency, etc.)

« \What genetic and phenotypic variation IS
present, and how Is it structured In
populations of organisms? Species?



Three computational/
algorithmic challenges

e 1. High throughput genome sequencing
and “tagging” technologies

o 2. Statistical genetics: genomic variation
pedigrees, and populations

e 3. Systems biology and the quantitative
description of complexity



whole genome shotgun sequencing
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Two graphical formulations
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Node = “read”

Edge = read-read alignment

Seek consistent path

Decompose into k-mers
Node = k-mer

Edge = maximally
overlapping k-mers in
dataset

Assembly = traversal



Scales

« Genome sizes
— Fungi ~ 40 Mb (500K reads)
— Human, mammals ~ 3 Gb (30M reads)
— Wheat, pine ~ 15-20 Gb (200M reads)

* To find reads that overlap on genome, must seek
all pairwise alignments
— Use hashing schemes to avoid N2 work
— Can be readily parallelized
— Repeats in genome are problematic (reads w/many

alignments)

* Problem of determining optimal reconstruction of

genome is hard ...

— Heuristics needed to handle various additional
constraints. Big assemblies take weeks/months



New sequencing technologies:
cheaper, faster (& crappier)

Driven by market for human resequencing f)
-- shorter reads, lower quality

Enables sequence as a “hammer” to solve
other problems in new ways

-- genetic markers

-- resequencing desirable lab-created
variants

-- sampling natural variation in populations

1-2 Billion bp/run

454 LIFE
SCIENCGES

100-300 Million bp/run

ABI 3730 70 k|Io bp/run



New Technology: quality v. cost

Solexa, ABI-SOLID, ...
— Dramatically lower cost per raw base (1000X)
— Dramatically reduced read length (~30-50 bp) & quality
Development driven by market for human resequencing
— need to recognize 1 SNP/1000 bp; “$1000 genome”
Why so cheap?
— Highly multiplexed (e.g., 1077 fragments/experiment)
— Optical readouts -- watch dNTP -> DNA + Pi reaction!
Cost for another maize genome
— Sanger: $15M (~6.5X, ~$1/Kb) high quality draft
— Solexa: $360K (~50X, ~$3/Mb)!!! But what quality?
On the way: single molecule methods (<five years). Terabases/day or more.



Challenges/rewards

One run ~few days, 30 million “reads” per
iInstrument.

Aligning reads to reference on ~20 cpu can
take ~few days

Aligning reads to each other for de novo
assembly (w/o reference to guide) takes a bit
longer. Parallelizable.

Resolving graph into sensible assembly is
where algorithmic development is needed.

>Thousandfold reduction in cost of genomes.



Can use short reads to identify variation
VS. a reference sequence
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Figure 3. High gquality SNP detection

* Problem: rapidly align 100 million short reads
to best position in human genome.

 |dentify true variations and reject false
positives, using error model learned from
data



crash course In genetics

A chromosome is a single DNA molecule, 10’s or 100’s of
millions of “letters” long,harboring thousands of genes,
associated regulatory sequences, and other stuff (“junk™)

Except for X and Y, somatic cells have two “copies” of each
chromosome, one each from mom/dad

The copies differ in detail (humans 1/1000 bp have single
letter changes “SNPs”; also hundreds of small inversions,
local duplications)

When sperm/egg (or pollen/ovule, or spore) are produced, the
two copies line up and exchange ~1-2 segments to make new
mosaic sequences. One such mosaic is passed on to
offspring from each parent.

Chromosome pair of offspring is then one mosaic of maternal
grandparental sequences, and another mosaic from paternal
grandparents.



baby



dad

mom

If X IS a causal variant and
* 1s some other linked
variant, then * and trait
may co-occur in offspring

Over time, recombination
will eventually separate *
and X.



dad mom

X Variations (“markers”) that
are farther apart will not be

co-inherited
I I History of a population
X determines the range of this
correlation



After few thousand generations,
“block” structure remains

Halpotype block

b
Individual 1

Individual 2

from Paabo Nature 421, 409-412(23 January 2003)



Common ancestry

Mumber of
ancestral ineages
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MNature Reviews | Genetics

M generations ago, 2M
(great)M-2grandparents
contributed to your genome

But the human population
gets smaller as we go back
In time

So there must be common
ancestry

Analytical calculations for

simple cases; simulations

required for more complex
modeling



dad

mom

Variations (“markers”) that
are farther apart will not be
co-inherited

Given a set of known variants
across the genome, we can
ask whether or not each iIs co-
Inherited (“associated”) with a
trait of interest.

Can have a severe “multiple
testing” problem in assessing
significance of a correlation.



Population structure can
produce spurious associations
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Caution: the blue allele is overrepresented among cases -
- but only because it is more frequent in population 1



Fit population structure to mixtures
of “k” different subpopulations

« Efficient algorithms exist for inferring population
substructure (e.g., similarities within geographic
subgroups) for dozens-hundreds of genomes. But
1000 Genomes Project underway, and hundreds of

thousands will be genotyped.
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Variation across species

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
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Determining

relationships

|dentify shared/different
characteristics across
species (hair/no hair;
A/T/CIG, etc.)

Evaluate likelihood of a
particular topology and
evolutionary model

Find tree or trees with
maximum likelihood (or
evaluate probabilities in
ensemble of trees)

This Is do-able with dozens of

species, problematic with
hundreds/thousands

Not guaranteed to converge
with more data



Variation

« Typical plant genome
has 25-35,000 genes

 Related species have
(mostly) “the same”
genes

e Protein-coding and
gene regulatory
sequences differ at few
% level between
populations/related
species A. charidemi A. majus

Langlade et al. PNAS. 2005
July 19; 102(29):10221-6.




Leaf shape
variation

Points used to capture leaf shape.

e Area
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Leaf shapes and sizes described by variation

along the first three Principal Components of
the leaf allometry model




3 PCs describe range of related
species of snapdragon
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Variation at ~15 genetic loci can describe
“path” from one species to another

A. majus and A. charidemi species clouds displayed in allometric space with
all QTL vectors laid end to end, starting from the center of A. majus.



Future genomic data analysis

« Genotyping and availability of genome sequences
across populations will be commonplace. $1000
genome for humans is only a few years away, will
also apply to tumors; agricultural species;
microbial communities.

e Rich phenotypic information in space and time;
gene expression, ‘omics will be associated with
genotypes.

 What are the significant genotype-phenotype
associations? What are artifacts of population
structure, statistical noise? Need predictive
power for diagnostics, personalized treatment,
targeted improvement of crops, conservation
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What is the high level science motivation for
your work?

What are some of the different science
guestions addressed in your field?

What specific science guestions do *you*
expect to address with your work?

What are the specific challenges you see In
the analysis of your data?



Does your work involve simulations? Experiments? Both? If both, how
do simulation and experiment influence each other?

Can you speak do where you expect to be, in terms of the satisfaction
of your data analysis needs, in the next 5, 10, 15 years?

Are there any real-time requirements for your analysis? Or time vs
accuracy trade-offs?

How much of the data currently being collected or generated is
analyzed? How much of it needs to be?

* How big is your data now? How big will it be in 5, 10 15 years?

What are the kinds of analysis you would like to do, but cannot, due to
lack of tools or techniques?

Given what you foresee in 5, 10, 15 years, what analysis tools and
technigues are working now but will soon breakdown?
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